Epithelial-Mesenchymal Transition during embryonic development

1) EMT: Definition?

2) Gastrulation, the basic example of "EMT"

3) Neural crest cell migration

4) Other examples

Cadherin switch? Regulation of adhesion?

Classical view of EMT (cancer cell lines)

Classical view of EMT: cellular changes

Classical view of EMT: cellular changes

Apical constriction

Cell elongation

E-cadherin downregulation

Apical junction disassembly

Lower cell-cell adhesion

Basal lamina degradation

Protrusions Integrin activation Cell migration Cadherin switch (E- to N- ??)

Classical view of EMT: genetic program

Gastrulation (and EMT)

It is not birth, marriage or death, but gastrulation which is the most important time in your life...

Lewis Wolpert, 1929-2021

Jean-Denis Bénazet, and Rolf Zeller Cold Spring Harb Perspect Biol 2009;1:a001339 Gastrulation (see you in a few weeks for more...)

First steps in metazoan morphogenesis

cnidaria

Sea urchin gastrulation

Gastrulation in sea urchin: primary mesenchyme ingression

Drosophila

Drosophila gastrulation

Ventral fullow

Initial phase = invagination

Drosophila gastrulation

Cross-section Note that internalized mesoderm is blurry

Superficial view (mesoderm dispappears as in invaginates)

Other gastrulation modes Ingression (birds, mammals)

Primitive Streak

Gastrulation in amniotes: Ingression

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Gastrulation can use partial aspects of EMT

Examples:

Cnidarians (See anemones, jellyfish, coral)

Amphibians (Xenopus)

Changes in cell shape: Gastrulation by invagination: Simulation of endoderm invagination in cnidarians

Fig. 3. Gastrulation in Nematostella c (green) and PI (red). The images show blastopore lip cells in each image fals mass and migrate into the blastocoel and remain a monolayer even after t assume a more squamous morpholo injected during cleavage stages with the projections back to the archenter from n=50 embryos examined. Aster 27h

Invagination

24h

27h

al expansion

ntal Biology 305 (2007) 483–497 in the cnidarian Nematostella curs via invagination not ingression gie a, Marymegan Daly b, Mark Q.

stained with phalloidin sctively, with two Is detach from the endodermal reme fashion in panels B', C'), strulation, the endodermal cells h one blastomere was bottle cells can be seen. Note are representative examples

Gastrulation in Xenopus laevis

2) Involution

Invagination ("bottle cells")

Involution = collective migration of a coherent tissue

Mesoderm tissue explant

David Rozema and Francois Fagotto

Dissection of cell motility inside embryonic tissues

David Rozema and Francois Fagotto

Various modes of gastrulation

Various modes of gastrulation

Various modes of gastrulation

Conserved regulators of EMT in development

Transcription factors: Snail Twist

Mesoderm: T/Brachyury Goosecoid

Snail sequence alignment

NvSnailA : MPRSFLVK NvSnailB : MPRSFLVK Acropora : MPRSFLVK Podocoryne : MPRSFLVK Dm_escargot : MPRSFLVK Xenopus snal : MPRSFLVK zebrafish_sna: MPRSFLVK Homo_Scratch : MPRSFLVK

Regulation of morphogenesis: Patterning and control of cell behavior

Example: Gastrulation

Snail marks prospective migratory cells

Drosophila

Regulation of morphogenesis: Patterning and control of cell behavior

Nature Reviews Genetics A simple plan — cnidaria Eldon E. Ball, David C. H

.

Nature Reviews | Genetics

Dynamic pattern of Lvsnail mRNA expression during sea urchin development.

Shu-Yu Wu, and David R. McClay Development 2007;134:1061-1070

View from bottom

Side view

Regulation of morphogenesis: Patterning and control of cell behavior

Example: Gastrulation Conserved "modules"

Divergent functions of two ancient Hydra Brachyury paralogues suggest specific roles for their Cterminal domains in tissue fate induction Holger Bielen, Sabine Oberleitner, Sylvain Marcellini, Lydia Gee, Patrick Lemaire, Hans R. Bode, Ralph Rupp,Ulrich Technau Development 2007 134: 4187-4197; doi: 10.1242/dev.010173

Snail and T/Brachyury expression in the chicken gastrula

Primitive streak

Brachyury expression in sea urchin and Xenopus

Blastopore lip, prospective mesoderm

Genetic program for EMT during Gastrulation in Amniotes

Figure 2. Genetic Pathways Governing Gastrulation

(A) The gene regulatory network governing EMT during gastrulation in the sea urchin embryo. A specification step involving Wnt8 signaling leads to HesC repression, switching on the EMT regulatory program, and inducing the ingression of the primary mesenchymal cells (PMCs). Alx1, aristalesslike 1.

(B) Mesoderm invagination in Drosophila. Twist and Snail pathways cooperate to modulate cell adhesion and cytoskeletal changes to undergo gastrulation movements and mesoderm spreading. The arrows indicate the flow of the pathway, not direct transcriptional regulation. Abl, Abelson kinase; Htl, Heartless (Drosophila FGF receptor); Dof, downstream of FGFR; Fog/Cta, folded in gastrulation/ concertina.

(C) Genetic pathways controlling gastrulation in amniotes. Convergence of signaling pathways at the posterior part of the embryo leads to primitive streak formation and initiation of the EMT as well as the mesodermal fate program. Snail genes are key regulators of the EMT program during gastrulation in amniotes as they control cellcell adhesion, cell shape, and motility. Additional mechanisms such as endocytosis, lysosomal targeting, and degradation of the E-cadherin protein together with the control of basement membrane integrity explain the rapid and drastic changes occurring in ingressing cells during gastrulation. The induction of endodermal and mesodermal fates is mainly governed by the FGF and Nodal pathways through specific regulators and the contribution of some of the genes involved in the EMT program. EPB4L5, FERM and actin-binding domains-containing band 4.1 superfamily member; FLRT3, Fibronectinleucine-rich-transmembrane protein-3; Net-1, neuroepithelial transforming factor 1; MMP, metalloproteinases; p38IK, p38 interacting kinase.

E-cadherin downregulation is not required for gastrulation

Zebrafish: Only E-cadherin Xenopus: Only C-cadherin (~E-cadherin) Drosophila: Switch E- to N-cadherin, but..... Drosophila gastrulation

Mis-expression of E-cadherin in the embryonic mesoderm of Drosophila

Cadherin switching during the formation and differentiation of the Drosophila mesoderm – implications for epithelial-to mesenchymal transitions

Gritt Schafer1, Maithreyi Narasimha, Elisabeth Vogelsang and Maria Leptin Journal of Cell Science (2014) 127, 1511–1522

DEVELOPMENTAL BIOLOGY, 9e, Figure 10.10 (Part 1)

© 2010 Sinauer Associates, Inc.

Figure 1 | Skeletal fate of cranial neural crest cells in vertebrates. The embryo figure shows colonization of the head and pharyngeal arches by diencephalic,

anterior and posterior mesencephalic, and rhombencephalic neural crest cells (NCCs), as indicated by the colour code. The diagram is representative of chick, mouse,

and human embryos, although the NCC migratory pathways might differ slightly in different species. The skull drawings show comparative contributions of NCC

populations to cranial skeletal elements of humans, mice and birds. Drawings are based on NCC fate-mapping studies and on extrapolation of avian and mouse data

to known homologues in the human7,9–13,63,156,157. Some bones, including the squamosal (SQ), alisphenoid (AS), and pterygoid (PT), are shown with mixed contribution

from different NCC populations. Note that in mammals the frontal (FR) and parietal (PA) bones have been reported to be of neural crest and mesodermal origin,

respectively13. In birds, the frontal and parietal bones have been reported to be either entirely derived from NCCs12, as shown in the figure, or derived from a dual neural

crest/mesodermal origin7,10. AN, angular bone; AR, articular bone; BA, basihyal; BA1–BA3, pharyngeal arches 1–3; CB, ceratobranchial; CO, columella; DE, dentary

bone; di, diencephalon; EB, epibranchial; EN, entoglossum; FNP, frontonasal process; HY, hyoid bone; IN, incus; IS, interorbital septum; JU, jugal bone; MA, malleus;

mes, mesencephalon; MX, maxillary bone; NA, nasal bone; NC, nasal capsule; PL, palatine bone; PM, premaxillary bone; QU, quadrate; RP, retroarticular process;

R1-R7, rhombomeres 1-7; SO, scleral ossicles; ST, stapes; ZY, zygomatic bone.

Cranial neural crest and the building of the vertebrate head

•Fabio Santagati &

•Filippo M. Rijli

Nature Reviews Neuroscience volume 4, pages 806–818 (2003)

Origin of neural crest cells

Snail expression in the Xenopus neurula

b Vertebrate neural crest GRN

C Tunicate NC-like cell circuit

Stephen A. Green1, Marcos Simoes-Costa1 & Marianne E. Bronner

EMT in neural crest cells: Differential temporal sequences

Eric Theveneau, Roberto Mayor

Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration

Developmental Biology, Volume 366, Issue 1, 2012, 34-54

Contact inhibition of locomotion in neural crest cells

Dom neg Dsh – PCP inhibition

Contact inhibition of locomotion *in vivo* **controls neural crest directional migration**

Carlos Carmona-Fontaine¹, Helen K. Matthews¹, Sei Kuriyama¹, Mauricio Moreno¹, Graham A. Dunn², Maddy Parsons², Claudio D. Stern¹ & Roberto Mayor¹

NATURE Vol 456 18/25 December 2008

Role of E- to N-cadherin switch in neural crest cells

Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces

Elena Scarpa,¹ András Szabó,¹ Anne Bibonne,² Eric Theveneau,^{1,2} Maddy Parsons,³ and Roberto Mayor^{1,*} ¹Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK ²Centre de Biologie du Développement–UMR5547, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse 31400, France ³Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, UK *Correspondence: r.mayor@ucl.ac.uk http://dx.doi.org/10.1016/j.devcel.2015.06.012

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contact Inhibition of Locomotion (CIL) Is a Developmentally Regulated Property of NC Cells

Different Dynamics of Junction Disassembly in Migratory and Premigratory NC Cells

E-Cadherin Suppresses CIL In Vivo

E-Cadherin Suppresses CIL In Vitro

E-Cadherin Suppresses CIL In Vitro

23 min

15 00

min

E-Cadherin Suppresses CIL In Vitro

Scarpa et al., 2015, Developmental Cell 34, 421–434

Collective cell migration of neural crest cells

In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity *Lysophosphatidic acid receptor*

Sei Kuriyama,^{1,2} Eric Theveneau,¹ Alexandre Benedetto,³ Maddy Parsons,⁴ Masamitsu Tanaka,² Guillaume Charras,^{1,3} Alexandre Kabla,⁵ and Roberto Mayor¹

¹Cell and Developmental Biology Department, University College London, London WC1E 68T, England, UK ²Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine and Faculty of Medicine, Akita City, Akita 010-8543, Japan ³London Centre for Nanotechnology, University College London, London WC1H 0AH, England, UK ⁴Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, England, UK ⁵Engineering Department, Mechanics and Materials Division, Cambridge University, Cambridge CB2 1PZ, England, UK

The Rockefeller University Press \$30.00 J. Cell Biol. Vol. 206 No. 1 113–127 www.jcb.org/cgi/doi/10.1083/jcb.201402093

Collective cell migration of neural crest cells

Collective cell migration of neural crest cells

Directional collective migration: Chemotaxis and CIL ("Chase and run")

Chase-and-run between adjacent cell populations promotes directional collective migration

Eric Theveneau¹, Benjamin Steventon^{1,2,4}, Elena Scarpa¹, Simon Garcia^{1,3}, Xavier Trepat³, Andrea Streit² and Roberto Mayor^{1,5}

NATURE CELL BIOLOGY VOLUME 15 | NUMBER 7 | JULY 2013

Fig. 7. Cell–cell interactions and external signals regulating collective cell migration of cephalic NC cells. (A) Xenopus cephalic NC cells start migrating as a cell sheet. Cells located at the border of the population exhibit a clear cell polarity with cell protrusions oriented towards the outside. On the contrary, cells inside the population that are completely surrounded by other NC cells show no obvious polarity and display only cryptic protrusions. As migration proceeds the population becomes more mesenchymal and migration turns into a cell streaming. Cell–cell contacts in groups or between single cells trigger Contact-Inhibition of Locomotion (CIL, red inhibitory arrows) which leads to the collapse of cell protrusions. CIL, through its effect on cell polarity, is essential for coordinated migration and sensing of external cues. Cells that lose contacts with other cells have poor chemotactic response (tortuous path) but are actively attracted back towards other NC cells by co-attraction (blue arrows). Modified after Theveneau et al. (2010) and Carmona-Fontaine et al. (2011). Seemain text for details. (B) Chick cephalicNC cells undergo cell streaming and chain migration. Collisions between cells lead to the collapse of cell protrusions reminiscent of CIL (red inhibitory arrows) and a gathering behavior reminiscent of COA (blue arrows). Modified after Teddy and Kulesa (2004). In both Xenopus and chick isolated cells migrate less efficiently than cells in groups or chains (shown as tumultuous paths). NC cells at the border of a stream may encounter NC cells from an adjacent stream (gray cells) but differential expressions of ephrin/Eph molecules prevent mixing. In addition, inhibitors (ephrins/Eph, class3-semaphorins) present in the surrounding tissues (shades of pink) induce the collapse of cell protrusions and restrict NC migration to specific routes. Finally, chemotactic and chemokinetic factors promoting motility and targeting NC cells to specific locations are shown as shades of green.

Fig. 8. Contact-Inhibition, chemotaxis and Co-Attraction cooperate to promote collective migration in Xenopus cephalic NC cells. (A) NC cells are polarized due to cell–cell interactions mediating Contact-Inhibition of Locomotion (CIL). They show high RhoA activity at the contact and high Rac1 at the free edge. (B) External attractant further stabilizes well-oriented protrusions (increased Rac1 activity) creating a directionality bias towards region of high concentration of attractant. Cells that detach from the cluster transiently lose polarity (brown cell) and are unable to read external attractant. (C) Each NC cell is secreting C3a (blue circles) which acts as a local attractant promoting co-attraction (CoA) and gathering of NC cells. (D) CoA compensate for cell dispersion induced by CIL but also positively feedbacks into CIL by promoting cell collisions while cells are gathering back together. Altogether CIL and CoA help NC cells to undergo collective cell migration while retaining mesenchymal properties.

Fig. 9. Signal integration. Summary of the different classes of signaling pathways involved in regulating cephalic NC cell motility and polarity. External inhibitors produced by surrounding tissues are here represented by semaphorins. Cell-cell interactions include: ephrin/Eph signaling among NC cells and between NC cells and their surrounding tissues; but also GAP junctions (Cx43) and ClL (Wnt/PCP, Cadherins) among NC cells. Semaphorin and ephrin signaling promote the collapse of cell protrusions, possibly through RhoA activation. Connexin-43 (Cx43)-based GAP junctions are required for NC cells to polarize upon cell contacts and to interpret semaphorin signaling. How this effect is mediated remains unknown. ClL relies on PCP signaling and N-Cadherin-based cell-cell contacts. ClL promotes RhoA activity and blocks Rac1. Syndecan-4 inhibits Rac1. Paracrine chemokinetic/ chemotactic factors include Sdf1, VEGFA, FGF2/8 and PDGFs. Sdf1/Cxcr4 signaling activates Rac1. Downstream effectors of PDGF, VEGF and FGF pathways responsible for their positive effect on NC cell migration are unknown but likely to eventually regulate the small Rho GTPases. Autocrine signals are represented by complement factor C3a and its cognate receptor C3aR. C3a/C3aR signaling activates Rac1. Many crosstalks are likely to take place between pathways as several common effectors can be found. Neuropilin-1 can act as co-receptor for Plexins, VEGFR and PDGFR. Syndecan-4 (Syn-4) binds to Sdf1 and Fibronectin (Fn) and can act as a co-receptor for Cxcr4. C3a and Sdf1 can bind to each other while CXCR4 and C3aR can interact. Please note that data from Xenopus, chick, mouse and fish embryos are mixed in this figure. See main text for details and references.

Segmental and directional migration of cranial neural crest cells.

Maryline Minoux, and Filippo M. Rijli Development 2010;137:2605-2621

Environmental signals and patterning of craniofacial and pharyngeal structures.

Make me a duck, please!

Maryline Minoux, and Filippo M. Rijli Development 2010;137:2605-2621

Roberto Mayor, and Eric Theveneau Development 2013;140:2247-2251

Successive EMT during Embryonic Development

Epithelial-mesenchymal transition and mesenchymal-epithelial transition during heart formation (chick and mouse embryos).

Snail, Smad proteins, Hey proteins, Gata4, Fog2

Cell migration makes our look!

Quand j'aurai du vent dans mon crâne Quand j'aurai du vert sur mes os(ses) P'tête qu'on croira que je ricane Mais ça s'ra une impression fosse...

Boris Vian

Cell migration makes our hearts beat!

Aujourd'hui ça et là, les cœurs battent encore, Et la règle du jeu de l'amour est la même. Mais les dieux ne répondent plus de ceux qui s'aiment. Vénus s'est faite femme, et le grand Pan est mort.

George Brassens

Sempé