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What are stem cells?

What is a stem cell?
replicate itself, or...

A single cell that can

differentiate ino many
Cell types.

Image prepared by Catherine Twomey for the National Academies,
Understanding Stem Cells: An Overview of the Science and Issues

from the National Academies, http: //www.nafionalacademies.org /stemcells.
Academic noncommercial use is permitted.
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IPS reprogramming has...

. KLF4, 50X2, c-Myc, Nanog, Oct-3/4, LIN-28 |
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... NO ethical issue compared to hES cells!



Human IPS cell derivation, differentiation
and applications

Arrhythmic event
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Adapted from Bellin et a/.,, 2012



Differentiation of hiPSC in cardiomyocytes

conditions and assumptions:

v Differentiation of specific populations of CMs
(ventricular vs atrial vs nodal)

v' Purified cardiac population

v' Obtain mature (adult) hiPSC-CMs



Current methods for cardiac differentiation of
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Monolayer-based cardiac differentiation protocol

E Adapted from Moreau et a/., 2017
Sleiman et a/., 2020



nature
biotechnology

SIRPA Is a specific cell-surface marker for isolating
cardiomyocytes derived from human pluripotent stem cells

Nicole C Dubois', April M Craft!, Parveen Sharma?, David A Elliott?, Edouard G Stanley’, Andrew G Elefanty?,
Anthony Gramolini? & Gordon Keller!

To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from
human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory
protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent
stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an
antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation
cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells

were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating
populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology
for generating large numbers of enriched cardiomyocytes for therapeutic applications.



Purified beating syncytium from hPSC-CMs

NKX2-5-GFP
embryoid
bodies

SIRPA+- cell derived
population



Metabolic sorting of hPSC-CMs

Cell Stem Cell Ce“

Distinct Metabolic Flow Enables
Large-Scale Purification of Mouse and Human
Pluripotent Stem Cell-Derived Cardiomyocytes
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Mitsushige Murata,’ Makoto Suematsu,2® and Keiichi Fukuda®-*

1Department of Cardiology

2Department of Biochemistry

Keio University School of Medicine, Tokyo 160-8582, Japan

3Japan Society for the Promotion of Science, Tokyo 102-8472, Japan

4Asubio Pharma, Kobe 650-0047, Japan

5Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project,
Tokyo 160-8582, Japan

SDepartment of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
*Correspondence: hattori.fumiyuki.ef@asubio.co.jp (F.H.), kfukuda@a2.keio.jp (K.F.)

http://dx.doi.org/10.1016/j.stem.2012.09.013



2C12

Metabolic sorting of hPSC-CMs
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How mature are hPSC-derived CMs in the dish?



Comparison of action potentials
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hiPSC-CMs exhibit spontaneous automaticity!



@ European Heart Journal BASIC SCIENCE
EUROPEAN doi:10.1093/eurheartj/ehs096

SOCIETY OF
CARDIOLOGY ™

Derivation and cardiomyocyte differentiation
of induced pluripotent stem cells
from heart failure patients

Limor Zwi-Dantsis!2, Irit Huber!, Manhal Habib!, Aaron Winterstern?,
Amira Gepstein'!, Gil Arbell, and Lior Gepstein'3*

'Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology,
POB 9649, Haifa 31096, Israel; *Biotechnology Interdisciplinary Unit, Technion—Israel Institute of Technology, Haifa, Israel; and *Cardiology Department, Rambam Medical Center,
Haifa, Israel



Integration of HF hiPSC-CM in host cardiac tissue

Integrated hiPSC-CMs with rat CMs



Integration of HF hiPSC-CM in host cardiac tissue
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How to improve the maturity of

hiPSC-derived cardiomyocytes?



Stem cell maturation @ oo
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Developmental progression of cardiac myocytes

defined sarcomere formation
Developmental and chamber-
specific sarcomere isoforms
Refined Ca2+ cycling and beating

Nascent sarcomere formation
Embryonic/fetal isoforms
Amorphic cell structure
Rudimentary Ca2+ cycling and beating
ssTnl




Stem cell maturation @ s
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Cell Reports

Metabolic Maturation Media Improve Physiological
Function of Human iPSC-Derived Cardiomyocytes

Graphical Abstract

iPSC-cardiomyocytes

Maturation Media

RPMI/B27
high fatty acid
low glucose

low fatty acid
high glucose
l aerobic respiration

electrophysiology
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SR calcium
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Disease Modelling

Engineered Heart Tissue
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Highlights

e We developed a defined maturation medium for hiPSC-CMs

e The media improve electrophysiological and mechanical
characteristics of hiPSC-CMs

¢ The media improve the fidelity of disease modeling

Authors

Dries A.M. Feyen, Wesley L. McKeithan,
Arne A.N. Bruyneel, ...,

Thomas Eschenhagen,

Christian M. Metallo, Mark Mercola

Correspondence
mmercola@stanford.edu

In Brief

Physiological immaturity of iPSC-derived
cardiomyocytes limits their fidelity as
disease models. Feyen et al. developed a
low glucose, high oxidative substrate
media that increase maturation of
ventricular-like hiPSC-CMs in 2D and 3D
cultures relative to standard protocols.
Improved characteristics include a low
resting V,,, rapid depolarization, and
increased Ca®* dependence and force
generation.



Fatty acids improve the hPSC-CMs
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Biocompatible polyethylene glycol (PEG) hydrogel arrays
imitating the myocardial ECM and allowing formation of
engineered cardiac tissue constructs.

Kim et al.,, PNAS 2010



Monolayer
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Engineered heart tissues e
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Engineered heart tissues DD e

Figure 2. Histological Evaluation of
hiPSC-EHTs

(A) Representative still view of a living EHT.
(B) Longitudinal section stained with H&E.
(C) Cross section stained for dystrophin.
(
(

Dystrophin

D) Longitudinal section stained for MLC2v.
E) Whole-mount immunofluorescence
confocal microscopic section of EHT stained
with DRAQ5 (nuclei, blue) and w-actinin
(green).
(F) Confocal analysis of hiPSC-CM cultured
in 2D for 30 days stained with DRAQ5 (blue)
and antibodies against cardiac MLC2v (red)
and a-actinin (green).
(G and H) Whole-mount immunofluo-
rescence confocal microscopic section of
30- to 35-day-old EHTs stained with DRAQ5
(blue) and antibodies against a-actinin
(red; G) and caveolin-3 (green; G) or phal-
loidin (red; H) and an antibody against
junctophilin-2 (green; H).
(I) Transmission electron microscopy of
35-day-old EHT. Arrows indicate structures
resembling t tubules.
See also Figure S2.

Mannhardt et a/., Stem Cell Report 2016
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Mannhardt et a/., Stem Cell Report 2016
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Figure 5. Regulation of Contractile Function of hiPSC-EHTs by Inotropic Drugs

Average contraction peaks before (black) and after (red) the respective inotropic drug intervention.

(A-H) Positive inotropic drugs (A-F) were tested at submaximal (0.5-0.6 mM), and negative inotropic drugs (G and H) at high (1.8 mM; H)
and submaximal (0.5 mM; G) calcium concentrations. Depicted is the electrically stimulated (1.5-2 Hz) mean relative force in percentage
of baseline maximum + SEM in modified Tyrode’s solution; replicates are indicated as EHTs/number of independent experiments.
(A) calcium (5 mM; n = 8/2). (B) ouabain (100 nM; n = 6/2). (C) Bay K-8644 (300 nM; n = 4/1). (D) EMD-57033 (10 uM; n = 4/1).
(E) isoprenaline (100 nM; n = 4/1). (F) rolipram (10 puM) + isoprenaline (100 nM, red) versus isoprenaline (100 nM, black; n = 11/2).
(G) ryanodine (0.3 uM, red; 10 uM, blue; n = 6/2). (H) verapamil (1 uM; n = 18/2).

See also Figure S5.

Mannhardt et a/., Stem Cell Report 2016
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Early-stage intensity-trained tissues Ll e

LETTER

Advanced maturation of human cardiac tissue
grown from pluripotent stem cells

Kacey Ronaldson-Bouchard!, Stephen P. Ma!, Keith Yeager!, Timothy Chen', LouJin Song?, Dario Sirabella!, Kumi Morikawa?,
Diogo Teles!4, Masayuki Yazawa? & Gordana Vunjak-Novakovic!>#

https://doi.org/10.1038/s41586-018-0016-3




Early-stage intensity-trained tissues
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Ronaldson-Bouchard et a/., Nature 2018
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Early-stage intensity-trained tissues

LETTER
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Early- vs late-stage intensity-trained tissues @i s
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Cell

Cardioids reveal self-organizing principles of human

cardiogenesis

Graphical abstract

{[®1 cardiomyocyte
@ Endothelial cell
= Epicardium
@ Pluripotent stem cell

High throughput

Human PSCs

%Z&

Modeling heart chamber IL

development & disease J %

Morphogenetic cavity
defects

Modeling injury

Developing
left ventricle

Highlights
e Chamber-like cardioids form a cavity and recapitulate heart
lineage architecture

e Cardioid self-organization and lineage identity is instructed
by signaling

e WNT-BMP signaling directs cavity formation via HAND1

e Cryoinjury initiates an in vivo-like fibronectin and collagen
accumulation
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In brief

Cardioids that pattern and morph into
chamber-like structures are established
from human pluripotent stem cells.
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Heart organoid formation in 3D culture
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Heart organoids and cardiac cell lineage
composition
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Heart field development and cardiomyocyte
specification in human heart organoids
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Heart organoids recapitulate functional and
structural features of the developing heart
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Heart organoids recapitulate hallmarks of
pregestational diabetes-induced congenital heart
disease
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Brief UltraRapid Communication

Matrigel Mattress

A Method for the Generation of Single Contracting Human-Induced
Pluripotent Stem Cell-Derived Cardiomyocytes

Tromondae K. Feaster, Adrian G. Cadar, Lili Wang, Charles H. Williams, Young Wook Chun,
Jonathan E. Hempel, Nathaniel Bloodworth, W. David Merryman, Chee Chew Lim,
Joseph C. Wu, Bjorn C. Knollmann, Charles C. Hong
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Heart regeneration

3 conditions to reach:

v" Derivation of CMs from hPSCs

v' In vitro engineering and maturation of cardiac tissues
v Controllable cell delivery in the heart



Bioengineered approaches to myocardial
regeneration
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Fig. 1. Bioengineered approaches to myocardial regeneration: initial steps in cardiac regeneration: (1) skin biopsy from the patient, (2) somatic cell culture and expansion, (3) derivation of
iPS cells by introducing a specific set of pluripotency-associated genes (Oct4, Sox2, cMyc, and KIf4) into the somatic cell, (4) iPS cell expansion; cardiac tissue engineering: (5a) Differen-
tiation of iPS cells into cardiomyocytes, (5b) engineering a cardiac patch, (6) electromechanical conditioning of iPS-CMs and tissue engineered patches within a bioreactor, (7a) epicardial
injection of cells into the infarct zone border, and (7b) implantation of an engineered cardiac patch.



Basic Science

Microfluidic Single-Cell Analysis of Transplanted Human
Induced Pluripotent Stem Cell-Derived Cardiomyocytes
After Acute Myocardial Infarction
Sang-Ging Ong, PhD*; Bruno C. Huber, MD*; Won Hee Lee, PhD; Kazuki Kodo, MD, PhD;

Antje D. Ebert, PhD; Yu Ma, PhD; Patricia K. Nguyen, MD; Sebastian Diecke, PhD;
Wen-Y1 Chen, PhD; Joseph C. Wu, MD, PhD



hiPSC-CM transplantation and survival of hosts
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Improved EF after transplantation of hiPSC-CMs
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Improved heart function following hiPSC-CM

transplantation
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Attenuated cardiac remodeling following hiPSC-
CMs transplantation
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