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Outline

. Gene expression regulation: why and how?
. Critical roles of transcription co-activators.

. Case study #1: Nutrient-sensing and sexual
differentiation in the fission yeast S. pombe.

. Case study #2: Regulation of interferon-
stimulated genes in colorectal cancer cells.




Defining gene expression regulation

and why should you care?



Problem

 Genes alone can account for the extraordinary
complexity of a living organism.

* Genes interact with each other and with their
environment (medium, cells):
— House-keeping genes: ‘always’ ON
— Regulated genes: ON or OFF

l

Gene expression regulation




Difference prokaryotes / eukaryotes

* Prokaryotes: ON is the default state
regulators =repressors

 Eukaryotes: OFF is the default state
regulators = activators



Difference prokaryotes / eukaryotes

* Prokaryotes: ON is the default state
regulators = repressors
although: archeal histones...

 Eukaryotes: OFF is the default state
regulators = activators
although: pervasive transcription...




Importance of gene regulation

« Self-renewal and cell-type specification.

« Adaptation to the environment and
evolutionary novelty.

« Perturbations during oncogenesis.



Structure of an eukaryotic gene
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Regulating the expression of a gene
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Regulating transcription
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Regulating transcription

1. Chromatin structure
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Regulating transcription

1. Chromatin structure
2. Sequences (cis-regulatory elements)
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Regulating transcription

1. Chromatin structure
2. Sequences (cis-regulatory elements)
3. DNA-binding factors (trans-acting factors)
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Regulating transcription

1. Chromatin structure

Elongation

Termination
Factors

Co-activator

4. ...and many other regulatory proteins!



Regulation of transcription initiation

* cis-regulatory elements

« Specific transcription factors:

— DNA binding domain: binds to specific motifs,
6-10 bp, within promoters / enhancers

— Trans-activation domain: recruits co-
activators and general transcription factors

« General transcription factors:
— DNA binding: TATA box-binding protein (TBP)
— Initiations (vs. elongators + terminators)



Regulation of transcription initiation

 Nucleosomes positioning: ATP-dependent
chromatin remodeling complexes

+ Histone modifications (‘histone code’):
histone-modifying complexes

= transcription co-activators

« Additional layer: non coding RNAs, DNA
methylation

= Epigenetic regulation of transcription




Overall objective:

To understand the mechanisms of transcription
Initiation and its regulation by external factors.

Transcription
Elongators

General

Transcription
Terminators




Classical view

EXTERNAL SIGNAL




Recent discoveries

EXTERNAL SIGNAL

Transcrlptlon
Elongators

Transcription
Terminators




Transcriptional co-activators

« Bridge promoter-bound activators to general
transcription machinery.
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Transcriptional co-activators

« Bridge promoter-bound activators to general
transcription machinery.

« Chromatin-modifying and —remodeling activities.
« Multifunctional: modular organization.

 Heterogeneous entities.

DNA

UAS
Nucleosome



Open questions

1. Regulatory input from signaling cues?
=» Conditions / Factors modulating their activities.

2. Direct target genes?
=» Mechanisms of transcription initiation.

3. Principles of assembly?

=» Functional relevance of their modularity and
heterogeneity.



Which experimental systems are

avallable to address these questions?



Our model co-activator complexes

NuA4/TIP60

Papai et al., 2020 Wang et al., 2018



Our model co-activator complexes

NuA4/TIP60

Structural organization = Functional organization




Overall goals of our research
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The tree of all Eukaryotes
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Transcription regulation in yeast



Transcription regulation in yeast

Saccharomyces cerevisiae = budding yeast

Schizosaccharomyces pombe = fission yeast 'i;;;‘_ﬂ




Experimental advantages

« Easy to manipulate, store, maintain.

« Unlimited biochemistry, genetic approaches.
« Genomes very well annotated.

 Fast and easy classical and system wide genetics.

 Knock-out, fluorescent tag, purification tag
collections.

« Best biological characterization of an eukaryotic
organism (epigenome, transcriptome, proteome,
Interactome, metabolome, phenome).

 Novel techniques first developed in yeast



Gene regulation In yeast

Stress
responses
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Melosis

Mitosis




Cell fate determination in yeast

Mating-type switching

Proliferation vs quiescence vs sexual differentiation
= conjugation = meiosis =» sporulation

Dimorphic switch = yeast-to-hyphae, controls virulence
In many pathogens, eg. C. albicans

These events are controlled by external cues, from the
yeast’s environment, typically nutrient quality.




One project in my lab

To understand how cells sense nutrient availability to

coordinately regulate gene expression and control cell fate.

High nutrients Proliferation

Low nutrients Differentiation,

Quiescence

Regulatory Gene Cell fate

External cues . .
pathways expression decisions




The life cycle of S. pombe
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Regulators of the switch
proliferation vs. differentiation
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Bdhler, Hiraoka, Hoffmann, Jones, Kawamukai, Moreno,
Murakami, Nielsen, Okayama, Petersen, Russell, Toda,
Uritani, Weisman, Yamamoto, Yanagida labs
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Regulators of the switch
proliferation vs. differentiation
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Transcriptome profile of gcn5A

The transcriptome of gcn5A mutants = that of cells
undergoing differentiation (nutrient starved).

% in genome % up in gcnbA
(5129 genes) (82 genes)

others 17%

80%
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De-repression of Stell target genes

gcnbA

gcnbA
stellA




‘Constitutive’ differentiation phenotype

h?° gcn5* h%° gecn5A
DAPI
+
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Gcn5 HAT activity is required of the repression of
differentiation in high nutrient conditions




Differentiation phenotype of other
SAGA mutants

Time upon starvation (hrs)

genotype 0 4 8 24
wild-type 0 4.6 18 37
gcn54 16 23 28 59
spt84 0 0 0 0
stellA 0 0 0 0

Opposing regulatory roles of SAGA subunits
In differentiation




Expression of differentiation genes
In Spt8A mutants
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Spt8is required for the induction of expression of
differentiation genes upon nutrient starvation




Are these roles direct?

Chromatin Immunoprecipitation (ChlP): is SAGA bound
to promoters of differentiation genes?



Are these roles direct?
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SAGA recruitment
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Thus, so far:

With Without
nutrients nutrients

WHAT’S GOING ON?



Which factors act directly?
Epistasis analysis (double mutants)
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Working model

Nutritional
starvation

Vegetative growth Sexual differentiation



Conclusions so far

« SAGA directly regulates differentiation genes and the
switch between proliferation and differentiation.

« SAGA switches from a repressor to an activator,
depending on nutrients.



Conclusions so far

« SAGA directly regulates differentiation genes and the
switch between proliferation and differentiation.

« SAGA switches from a repressor to an activator,
depending on nutrients.

How does SAGA sense nutrient availability to switch

from a repressor to an activator of transcription?




Which regulatory pathway(s)
regulate(s) SAGA?

Protein

> Synthesis \

CELL GROWTH,
PROLIFERATION

HIGH
NUTRIENTS

NUTRIENTS ARk

DIFFERENTIATION,
QUIESCENCE

TORC?2 Stell

(Rictor) ./ / \5



Genetic interaction analyses
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‘The TORC1 & TORC2 pathways function upstream of SAGA.‘




Genetic interaction analyses
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‘The TORC1 & TORC2 pathways function upstream of SAGA.‘




SAGA phosphorylation vs nutrient levels
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ldentification of Taf12 by SILAC-MS
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ldentification of Taf12 by SILAC-MS
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Identification of Tafl12 by SILAC-MS
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Discrepancy between genetics and biochemistry:

Tafl2 is not phosphorylated when TORCL1 is active (high nutrients)
Nutrients —>»TORC1—> 2?7?7777 —>»SAGA 1 Differentiation




Discrepancy between genetics and biochemistry:

Tafl2 is not phosphorylated when TORCL1 is active (high nutrients)
Nutrients —>»TORC1—> 2?7?7777 —>»SAGA 1 Differentiation

Genetic analyses

Similar to Genb5, the PP2A-B55 phosphatase represses
differentiation in rich conditions, downstream of TORC1.

Nutrients —>»TORC1=—>PP2A-Pab1—>»SAGA | Differentiation



Effect of PP2A on Taf1l2 phosphorylation
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P-Taf12/Taf12 (a.u.)

Effect of TORC2/AKT
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P-Taf12/Taf12 (a.u.)

Effect of TORC2/AKT
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Role of Taf12-P in sexual differentiation
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Conclusions
1

SAGA regulates differentiation genes in response to
the nutrient-sensing TORC1 and TORC2 pathways,
through Tafl2 phosphorylation.

HIGH —>/ TORCI CELL GROWTH,
NUTRIENTS (Raptor) PROLIFERATION
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differentiation genes I—

stell*, mei2*, ...



CASE STUDY

For further detalls

Published online: October 27, 2017
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Article et reports

TORC1 and TORC2 converge to regulate the SAGA
co-activator in response to nutrient availability

Thomas Laboucarié®, Dylane Detilleux®, Ricard A Rodriguez-Mias?, Céline Faux®, Yves Romeo™",
Mirita Franz-Wachtel?, Karsten Krug?®, Boris Macek?, Judit Villén?, Janni Petersen® &
Dominique Helmlinger™



Transcription (dys)regulation In

cancer



Trancriptional addiction in cancer

* Genetic alterations can disrupt transcriptional control.
« Cancer cells become addicted to specific TFs.

* TFS require co-activators, which can be druggable.

4 N\ Gonetic Dysregulated Vulnerabilities
{ | — chandes — = deonse expression — @ —> not predicted by
“ 4 9 program 2N genetic changes

Normal cell state Cancer cell state




The example of MYC

* Major oncogene (~70% / cancers); difficult to target.
 First cofactor identified: TRRAP (SAGA and TIP60).

Sustaining Evading growth
proliferative signals suppression

Deregulating

, Avoiding immune
cellular energetics

destruction

cell death

Escaplng Enabling replicative
programme MYC immortality

Tumour promoting
inflammation

Genome instability
and mutation

Inducing angiogenesis Invasion and metastasis



Another project ongoing

2

Which genes are directly controlled by SAGA/TIP60 and

what is their contribution to MYC addiction in cancer cells?




Gene regulation by SAGA and TIP60

* In yeasts: metabolic adaptation, ribosome biogenesis.

 In slower-growing eukaryotes (aka plants and

metazoans):
- Stress response.

- Early development and differentiation.

- Cell type-specific profiles.

Workman, Winston, Berger, Coté, Struhl, Young,
Green, Pugh, Holstege, Shore, Pillus, Helmlinger,
Tora, Herceg, Dent, Aquea, Pineiro labs



Predictive, general models of action
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Predictive, general models of action

RNA-seq in deletion ChlP-seq profile of
mutant of a factor that factor




Predictive, general models of action

RNA-seq in deletion ChlP-seq profile of
mutant of a factor that factor

Hu et al., 2007
~3% overlap only! Venters et al., 2011

Low number of direct targets Lenstra et al., 2011

Location does not predict effects!




A major problem in the field

* Biological explanations:

- Experimental conditions.
- Compensatory mechanisms: adaptation, functional redundancy.
- Neutral evolution as null hypothesis (# adaptationist approach).
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A major problem in the field

* Biological explanations:

- Experimental conditions.
- Compensatory mechanisms: adaptation, functional redundancy.

- Neutral evolution as null hypothesis (# adaptationist approach).

« Technical explanations:

- Statistical significance # biological meaning.

- Static analyses.

- Methodological limitations: indirect (RNA-seq), qualitative (ChIP-seq).

Which gene-specific properties can predict
regulatory effects?




What we implement

Acute genetic perturbations
Predictive biophysical

model

Nascent transcriptomics

Quantitative chromatin profiling
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Kinetic analyses
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Rapid and reversible depletion of endogenous SAGA
and TIP60 subunits using an auxin-inducible degron.




Measuring nascent transcript levels
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Nascent vs total transcriptomics upon
acute TRRAP depletion
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Stronger and less compensatory effects of TRRAP.




Quantitative native chromatin profiling

CUT&RUN-seqg
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Robust and high-resolution profiling of
TRRAP genomic occupancy.




Correlating location and effects
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regulated

genes
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Much better overlap promoters

Less indirect effects



Correlating location and effects
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Enrichment score

TRRAP direct target genes
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TRRAP is a co-activator of MYC and E2F
In cycling colorectal cancer cells.




Unexpected repressive roles

Interferon response
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Innate Immune pathway activation
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Effect on TRRAP on ISG transcription

Nascent RT-gPCR RNAPII ChIP
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TRRAP contributes to transcriptional repression of ISGs.




TRRAP occupancy at ISG promoters
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TRRAP binds the promoter of ISG master TFs.




Dynamics of ISG regulation by TRRAP
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Dynamics of ISG regulation by TRRAP
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Contribution of MYC
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TRRAP binds to ISG promoters independently of MYC!




Conclusions & Perspectives

5
ISGF3
ISGs

« TRRAP directly represses interferon-responsive

transcription factors in proliferating cancer cells.

By which mechanisms? Recruited by which TFs?
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Yeast as model systems

« Unicellular Eukaryotes
* Version 1.0 of “higher” Eukaryotes
« Conservation of many factors / mechanisms

Budding yeast Fission yeast
Saccharomyces cerevisiae  Schizosaccharomyces pombe

, ~ »
. =

/ :
™

cerevisiae = beer in Latin pombe = beer in Swahili



Some numbers

Cell size: 4-12 mm
Genome size: 12-14 Mb 1.2 byr
O =N

Gene numbers: 5000-6000

Evolutionary distance: 1-6bV\ /:ﬁbvr
Timing:

— Doubling time: few hours A

— Getting 10L culture: 24 hrs
— Creating a novel mutant: 2 weeks




Their importance

* Bread, beer & wine (agriculture)
* Unicellular - very easy to manipulate

* Biomedical research:
— Enzyme (1897)
— Cell cycle (2001 Nobel)
— Telomeres (2009 Nobel)
— Trafficking (2013 Nobel)
— Autophagy (2016 Nobel)
— Epigenetics: histone-code, RNAI
— Role of aneuploidy / genome instability in cancer
— Diagnosis tool in breast cancer (BRCA1)
— Gene therapy concept



The power of yeast genetics

« Conjugation of haploid yeast cells = diploid zygote

* Diploids enter meiosis = 4 haploid spores,
physically kept within one bag (ascus)

« Each ascus has the 4 products of ONE meiosis
(Mendel laws live!)

- Mutants are easy to create, propagate, and analyze

This the power of yeast genetics!




Subunit composition depending on
nutrient availability

1 2 3
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SAGA subunit composition is
Identical between rich and
starved conditions.




Gcenb functions downstream of TORC1
to repress differentiation
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Functional interactions between
TORC1, TORC2, and Gcnb

TORC1 5 Protein
/ (Raptor) SyntheS|S \

CELL GROWTH,

HIGH
NUTRIENTS PROLIFERATION
STARVED DIFFERENTIATION,
QUIESCENCE
\ TORC2

AKT differentiation genes I—

(Rictor)

stell*, mei2t, ...

Spt7/



Taf12 phosphorylation inhibits differentiation
upon nutrient starvation
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Increased TORC2 activity negatively regulates
differentiation, through Taf12 phosphorylation

Both loss of Torl AND higher Torl activity reduces differentiation.
(Halova D et al., J. Cell Biol., 2013)

Starved Genotype Differentiating cells

)
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s s qTubulin tor1-T1972A taf12-5A 55 % 2%

taf12-5A 50 £ 4%




Conclusions

. SAGA functions downstream of both the TORC1 and TORC2
signaling pathways to regulate differentiation.

. Taf12 phosphorylation is tightly and rapidly controlled by the
opposing activities of TORC1-PP2A and TORC2-AKT.

. Suggest thats TORC2 both activates and inhibits differentiation,
reminiscent of an INCOHERENT feed-forward loop.
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TRRAP occupancy at ISG promoters

[dVyYHL1+/dVyyL-] D4 zboT

0¢ Gl o'l S0 00
| L ] 3 ] 3 ' |

I i

:

l

-

[_INo binding

i

B Binding

LHVX
ovLNY
LLVIS
HIS7Ic
viVVic
1SVvO
ESYO
¢SVYO
ISVO
X
EXIN
GgLOSI
Z4d]
LNLLIE]
eLiHI
LLiHl
LHIHI

] TeEIdI

vridi
Ggeidl
4=
90839H
GOd9H
HLSdT
09Xdda
86Xdd
¢1S8
¢d41vd

SOSI-N Je bas-y3D dVHIL



