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Principles of animal morphogenesis Intro
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Principles of animal morphogenesis Intro

Drosophila larva tracheal system



Principles of animal morphogenesis Intro
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Keller, Schmidt, Wittbrodt, Stelzer. Science. 2008, 322:1065




Morphogenesis: a multilevel topic
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First steps in metazoan morphogenesis
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First steps in metazoan morphogenesis

Cnidarians = diploblastic
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First steps in metazoan morphogenesis

Diploblastic -> Triploblastic —>

mesoderm

Mesoderm:

-> specialized contractile cells = muscle
-> specialized excretory cells — nephros -> kidney

-> internal 0, + nutrient circulation -> blood vessels, heart

-> defense — immune cells

Acoelomate -> Coelomate Coelomic cavity

+ Elaborated organs -> need “room” for morphogenesis (= coelom) + sophisticated movements



First steps in metazoan morphogenesis
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The basic cellular processes involved in morphogenesis

Cell division Apoptosis Change in cell shape Intercellular migration Cell migration

Growth
Oriented division



Regulation of growth

Poorly controlled growth
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Regulation of growth

MITOGENIC STIMULI
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Control of the core Hippo signaling pathway through interacting upstream modules
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Control of the core Hippo signaling pathway through interacting
upstream modules. (A) Overview of the interactions of various
modules with the core pathway. The Hippo pathway consists of a core
kinase cascade in which the transcriptional co-activators YAP/TAZ are
phosphorylated and inactivated by either their exclusion from the
nucleus or their enhanced degradation. The nuclear activity of YAP/TAZ
promotes cell growth. (B) Upstream modules. (Panels i, ii) Two
upstream cell surface regulators, epithelial polarity or tight junction
(TJ) complexes (i) and adherens junction (AJ) or cadherin—catenin
complexes may function together to sense the integrity of the
epithelial layer. (Panel iii) Cell shape and mechanotransduction can
regulate the activity of YAP/TAZ independently of Lats kinase, but Lats-
dependent regulation of YAP/TAZ through the actin cytoskeleton has
also been observed. (Panel iv) Extracellular soluble growth factors act
reciprocally — with contact inhibition — through the Hippo pathway to
integrate mitogenesis with growth inhibitory mechanisms. (Panel v)
The atypical cadherins FAT and Dachsous set up a morphogen gradient
to control the spatial patterning of both cell proliferation (through
Hippo pathway signaling) and PCP. B-cat, B-catenin; a-cat, a-catenin,
AP, apical polarity complexes; Dco, Discs overgrown; E-cad, E-cadherin;
ECM, extracellular matrix; ex, Expanded; GPCRs, G-protein-coupled
receptors; RTK, receptor tyrosine kinase; PCP, planar cell polarity.



Regulation of growth
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Experimental model to study regulation of growth: Drosophila larval imaginal discs

Current Biology 24, R245-R255, March 17, 2014 ©2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.01.055

Coordination of Patterning and Growth
by the Morphogen DPP A Imaginal discs
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Figure 1. Imaginal discs and DPP-mediated patterning. ]
(A) Imaginal discs are primordial structures of adult insect appendages —— ———
that are already present at the larval stage. During metamorphosis @ O
each imaginal disc develops into a specific adult appendage (eye, . DPP brk sal omb

wing, leg, genital, etc.). Drosophila imaginal discs undergo patterning e
and growth during the larval stages. Imaginal discs are constituted of L2Ls
approximately 50 cells during the first larval instar and will grow up Current Biology
to 50,000 cells before the onset of pupation. The larval stage

depicted is late 3rd instar. (B) The DPP pathway patterns the wing

disc along the A-P axis. DPP diffuses from a thin stripe of cells at the

center of the disc and represses the expression of brk. The resultant

activity of DPP and BRK leads to the nested expression domains of

sal and omb. The domain boundaries of sal and omb will correspond

to anatomical landmarks in the adult wing such as the position of the

wing veins (L2 and L5).




Growth regulation: Integration of various inputs

Effects of TOR inhibition on wing growth

Well fed

Parker J, Struhl G (2015) Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie. PLOS
Biology 13(10): e1002274. doi:10.1371/journal.pbio.1002274
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002274

@PLOS ‘ BIOLOGY


http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002274

Growth: scaling and maintenance of patterns
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Morphogens: Examples of various types of gradients
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Example: Dpp (BMP) and controlled growth of Drosophila larval imaginal discs

Decapentaplegic and growth control in the developing Drosophila wing
Takuya Akiyama & Matthew C. Gibson
Nature 527, 375-378 (19 November 2015) doi:10.1038/nature15730

Wing disc Eye-antenna disc

Leg disc

Dpp GFP DNA

Dpp

a—f, Wing (a, b), eye—antenna (c, d), and leg (e, f) imaginal discs from UAS-GFP/+; dpp-GAL4/+ larvae are dissected and stained with anti-Dpp
antibody. GFP (green) indicates dpp-GAL4-expressing cells. Note that dpp-GAL4 is not expressed in the morphogenetic furrow of the third instar
eye—antenna disc (arrow in d). Dotted lines show outlines of imaginal discs. Blue: DNA. Scale bars, 100 um. Anterior is left.



Example: Dpp (BMP) and controlled growth of Drosophila larval imaginal discs

B Wing disc patterning by DPP
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Example: Dpp (BMP) and controlled growth of Drosophila larval imaginal discs

The problem of scaling

Figure 6. Scaling models.

(A) Expansion by dilution: a long-lived antagonist promotes DPP
degradation and thus hinders its dispersion. However, growth
dilutes the antagonist such that as the disc area increases, DPP
movement is facilitated. In this way the DPP gradient can
expand further as the disc grows.

(B) Expansion-repression: An expander, PENT facilitates DPP
diffusion but PENT expression is repressed by DPP. Initially DPP
does not reach the expression domain of PENT, thus PENT is
actively produced and diffuses through the wing disc. As PENT
increases DPP diffusion, DPP starts to repress pent expression
and the concentration of the

expander decreases accordingly.
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Current Biology 24, R245—R255, March 17,2014



How to grow in ‘harmony’?

Proliferation is naturally more
active at the periphery

NO!

YES! How to compensate to insure
proportional expansion of
different structures?




Model of growth regulation in Drosophila wing discs by the Dpp-Brk system.
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Gerald Schwank et al. Development 2008;135:4003-4013



Comparison of cell proliferation, disc size and Dpp signaling activity between wild-type discs
and discs with altered brk levels or Dpp pathway activity.

BrdU

wt

C765>dpp

dpp
GOF

brk
LOF

brk™: dpp’*/dpp™

brk+Dpp
LOF

Mad(Smad)  Brk reporter

Gerald Schwank et al. Development 2008;135:4003-4013



Cell division: Cleavage



Example of cleavage: Xenopus (amphibian)




Early embryo development — Types of cleavage

I. HOLOBLASTIC CLEAVAGE
A. Isolecithal
1. Radial cleavage

Echinoderms,
amphioxus

2. Spiral cleavage
Annelids, molluscs,
flatworms

3. Bilateral cleavage
Tunicates

4. Rotational cleavage
Mammals, nematodes

B. Mesolecithal

Displaced radial cleavage
Amphibians

II. MEROBLASTIC CLEAVAGE

A. Telolecithal
1. Bilateral cleavage . a o
Cephalopod A4

molluscs

2. Discoidal cleavage
Fish, reptiles, birds — = = —>

DEVELOPMENTAL BIOLOGY, Eighth Edition, Figure 8.3 (Part 2) © 2006 Sinauer Associates, Inc.

© Tamara Western 2013



Early embryo development — Modelling cleavage

Developmental Cell

Generic Theoretical Models to Predict Division
Patterns of Cleaving Embryos

Graphical Abstract Authors

Anaélle Pierre, Jérémy Sallé,

Model to predict division position Shape reproduction i . g i
- Martin Wubhr, Nicolas Minc

Correspondence
nicolas.minc@ijm.fr

In Brief

Pierre et al. develop computational
models to make predictions on the
positions and orientations of division
axes in subsequent rounds of embryonic
cleavages across fishes, amphibians,
echinoderms, and ascidians. The model
Prediction of embryonic cleavage patterns reveals a set of simple self-organizing

,‘\ii . rules that can predict the morphogenesis
ll \ 6
\.__

— o -

of early developing embryos from
Fish Amphibian Echinoderm Ascidian

different species.

Pierre et al., 2016, Developmental Cell 39, 667-682



Early embryo development — Modelling cleavage




Oriented cell division




Oriented cell division

Current Biology Vol 15 No 18
R758

Dispatches

Organ Shape: Controlling Oriented Cell Division

0000 = OO0
A4

‘Current Biology

W"d type daChsous Figure 1. Control of organ size and cell polarity by gradient signals.

Growth within a tissue could be controlled by reference to a gradient signal (blue). Cell

Current Biclogy

Figure 2.

Abnormal wing shape in Drosophila dachsous mutants.

During wild-type wing development (left) cell divisions are preferentially oriented on the proximodistal axis (left to
right in diagram), producing clones of cells elongated on this axis and contributing to formation of a longer
narrower wing. In wings lacking dachsous activity (right), cell divisions are no longer oriented on the proximodistal
axis, resulting in clones that are less elongated and a shorter wing. Note that clones of cells lacking ds are also
more rounded with smoother edges than clones of wild-type cells, due to a difference in cell adhesion [ 16], which
may also contribute to the shortening of the wing. The relative contributions of the effects of loss of oriented cell
divisions and changes in cell adhesion are currently unknown.

= growth and proliferation remains active as long as the steepness of the gradient
exceeds a certain threshold level (left). Once the slope of the gradient falls below a
g @ threshold due to continued growth, cell growth and proliferation are arrested (right). The
same gradient signal could also be used by cells to determine their polarity, shown in

@ this example by production of hairs on each cell which point up the gradient.

Baena-Lopez, L.A., Baonza, A, and
Garcia-Bellido, A. (2005). The orientation
of cell divisions determines the shape of
Drosophila organs. Curr. Biol., in press.



Epithelial polarity (polarities)
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Oriented cell division

(a) Neural Plate Transversal sections

Superfical cells

(d) Transversal sections
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Current Opinion in Cell Biology

| Castanon, M Gonzalez-Gaitan

Oriented cell division in vertebrate embryogenesis
Current Opinion in Cell Biology, Volume 23, Issue 6, 2011, 697-704

Oriented cell division during zebrafish neurulation. (a—c) Major steps of neurulation in zebrafish embryos. (a) Neural plate. (b) Neural keel. Inset
represents the orientation of cell divisions of neural progenitors at neural keel. The white lines represent microtubules. The black central line
corresponds to condensated chromosomes and the black dots correspond to centrosomes. (c) Neural rod. Inset represents the cross divisions (Cdivisions),
in which one of the daughter cells cross the midline (arrow). (d and e) Defects in midline formation in different mutant backgrounds

compared to wild type. (d) Wild type neural keel. Cells of the mirror-image epithelia are represented in blue, dividing cells in orange, and the midline in
purple. In wild type embryos, cells divide close to the midline and one of the cells is integrated into the contralateral epithelium. (e) Neural keel in
maternal-zygotic vangl2 (mzvangl2) mutants. These embryos display ectopic midlines probably due to deficient dorsal convergence, while C-divisions

are normal. (f) Neural keel in cadh2 and mzscrib mutants. These embryos showed abnormal midline morphology. C-divisions are impaired.



© 2003.

Vertebrate embryos are characterized by a MULTILAYERED organization
Separation of outer and inner cells in the early Xenopus embryo
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Tissue segregation in the early vertebrate embryo
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Fagotto, F. Semin. Cell Dev. Biol. 707 (2020), 130-146



Cell shape, motility and rearrangement



Changes in cell shape
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Changes in cell positioning

Cell sorting/segregation




Morphogenesis at the cellular level:
Importance of the contractile actomyosin cytoskeleton
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Changes in cell shape: Gastrulation by invagination:
Simulation of endoderm invagination in cnidarians
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Changes in cell shape: Drosophila gastrulation
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Morphogenesis at the cellular level:
Importance of the contractile actomyosin cytoskeleton

Apical Constriction and Invagination

-.L‘ L2

+ apical actomyosin
complex undergoes

- contraction to

buckle epithelium




Morphogenesis at the cellular level:
Importance of the contractile actomyosin cytoskeleton

Apical Constriction and Invagination
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Actin contraction during Drosophila gastrulation




Bursts of myosin contraction during Drosophila gastrulation
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Morphogenesis at the cellular level:
Importance of the contractile actomyosin cytoskeleton
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Ratchet mechanism of apical constriction

snail twist
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Xenopus gastrulation




Basic cell rearrangements during morphogenesis
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Developmental Cell

Chemotaxis orients intercalation

The Molecular Basis of Radial
Intercalation during Tissue Spreading
in Early Development

Andras Szabo, 0 Cobo,:* Shari Oma ra,! Sop McLachlan,' Ray Keller,? and Roberto Mayor'*
*Deparment of Cela De opment a Icgy y College London, London WC1E 68T, UK
2 iversty of Virginia, Cha oesvev 22908, USA
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Chemotaxis orients intercalation

Development 138, 565-575 (2011) doi:10.1242/dev.056903
© 2011. Published by The Company of Biclogists Ltd

PDGF-A controls mesoderm cell orientation and radial

intercalation during Xenopus gastrulation
Erich W. Damm and Rudolf Winklbauer*

Thinning and spreading of ectoderm

Thinning and spreading of mesoderm



Convergent extension




Tissue elongation:
medio-lateral intercalation = convergent extension
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Tissue elongation:
medio-lateral intercalation = convergent extension

Convergence and extension of equatorial
presumptive mesoderm during gastrulation
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Tissue elongation: autonomy and induction by TGFP signaling

+activin

Ectoderm explant \ Dorsal mesoderm explant

or
\ ectoderm explant treated
with activin/Nodal (TGFp)




Tissue elongation: Neural tube
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Convergent extension: polarization of protrusions

(A) (B)

(D)
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Convergent extension: polarization of contractile
actomyosin cytoskeleton

b Lecuit and Zallen labs
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Convergent extension: polarization of contractile
actomyosin cytoskeleton




Convergent extension: polarization of contractile
actomyosin cytoskeleton
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Forces directing germ-band extension in Drosophila embryos
*April 2017
*Mechanisms of Development 144(Pt A):Pages 11-22




Convergence-extension in Xenopus

A ‘ Laser ablation

John Wallingford team
Shindo and Wallingford



Convergent extension: polarization of contractile
actomyosin cytoskeleton versus protrusive crawling

Basolateral protrusion and apical contraction

cooperatively drive Drosophila germ-band extension

Zijun Sun', Christopher Amourda', Murat Shagirov', Yusuke Hara', Timothy E. Saunders"*’
and Yusuke Toyama'***
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Coming to Consensus: A Unifying Model
Emerges for Convergent Extension

Robert J. Huebner' and John B. Wallingford'-*

"Department of Moleci Biosciences, University of Texas at Austin, Austin, TX 78712, USA
*Correspondence: wa ord@austin.utexas.edu
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Drosophila dorsal closure (~ “Wound healing”)
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Dorsal closure
https://www.youtube.com/watch?v=rj95YkQSyic



Drosophila dorsal closure (~ “Wound healing”)

a Normal apoptosis in the amnioserosa

v
§
g (

b Modification of the apoptotic pattern

MORE APOPTOSIS WILD TYPE NO OR LESS APOPTOSIS

QUICKER NORMAL SPEED SLOWER

Science 2008 Sep 19,321(5896):1683-6. doi: 10.1126/science. 1157052,
Apoptotic force and tissue dynamics during Drosophila embryogenesis.

Toyama Y', Peralta XG, Wells AR, Kiehart DP, Edwards GS.




Drosophila dorsal cIosure (~ ”Wound healmg”)




Drosophila dorsal closure




A In vitro lamellipodia facilitated contact B In vivo filopodia facilitated contact

1. Contact initiation 1. Epithelial sheet fusion - early

.- B3

¥
*
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2. Epithelial sheet fusion - late

3. Fusion is mediated via filopodial contact







A Removal of tissues

B Organ sculpting

Key 4 Apoptotic cell

Ainhoa Pérez-Garijo, and Hermann Steller Development 2015;142:3253-3262



A Promotion of morphogenetic movement B Organ rotation

0° 180° 360°

Amnioserosa

Drosophila male genitalia

D Formation of folds

C Neural tube closure

Neural folds

Neural tube

D Cell fusion

% ¥ Key & ; § 2
I, A totic force === Myosin
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Ainhoa Pérez-Garijo, and Hermann Steller Development 2015;142:3253-3262



A Apoptosis-induced proliferation (AIP)
Wg/Wnt Wg/Wnt

Dpp/BMP Dpp/BMP
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Cell division

Apoptosis

Ainhoa Pérez-Garijo, and Hermann Steller Development 2015;142:3253-3262
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Various modes of tube formation
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Various modes of tube formation

a Lumen expansion through paracellular ion transport
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Various modes of tube formation
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Branching
(lung)

The figure models the functional integration of key growth factor signaling pathways in lung bud outgrowth, bud arrest, and bud
branching. Panel A depicts the function of FGF10 to stimulate bud outgrowth. Fgf10 is expressed in the distal mesenchyme so
that a decreasing gradient of FGF10 acts to stimulate chemotaxis of the bud tip toward the subpleural source of FGF10. Heparan
sulfation is also important for FGF function. Panel B depicts the function of BMP4 to stimulate lung branch tip outgrowth
together with FGF10. FGF10 is shown stimulating BMP4 expression, whereas the ligand binding proteins Gremlin (GRE) and
Chordin (CHO) exert negative modulation on BMP4. Panel C depicts the functional interaction of SHH and Hip with FGF10. SHH
inhibits Fgf10 expression away from the branch tip. However at the branch tip, Hip inhibits SHH, releasing the SHH mediated
inhibition of Fgf10 expression. Panel D superimposes the functional integration of Fgf10, Bmp4, and Shh to mediate the delicate
balance between chemotaxis and proliferation leading to bud induction versus inhibition of bud outgrowth. Panel E depicts the
events that may determine interbranch length by leading to arrest of bud outgrowth. FGF10 induces SPRY2, which in turn inhibits
epithelial outgrowth. Meanwhile, in more proximal regions suppression of branching is mediated by SHH, which inhibits Fgf10
expression outside the peripheral mesenchyme. Panel F depicts a potential mechanism for bud tip splitting in which WNT
signaling drives Fibronectin (FN) deposition between the branch tips, leading to epithelial cleft formation. Meanwhile, Dickkopf
(DKK1) inhibits Wnt signaling away from the cleft, leading to lower levels of FN deposition where clefting does not occur.
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° Social interactions among epithelial cells during tracheal
Bra nChlng branching morphogenesis

Amin S. Ghabrial & Mark A. Krasnow
Nature 441, 746-749(8 June 2006)
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a, Diagram of dorsal branch (DB) budding from tracheal epithelium (black; DB cells numbered 1-6) at the developmental stages and times indicated. Nearby cells (blue)
secrete Branchless FGF (blue dots), which activates Breathless (Btl) FGFR on tracheal cells, inducing migration and tube formation. Bnl also induces secondary branching
genes (for example pointed) in cells (green) that form unicellular secondary branches (stage 15). Subsequently, DB1 (terminal cell) forms terminal branches in response to
Bnl expressed by hypoxic larval cells. DB2 (fusion cell) forms a branch that fuses (dotted lines) to a contralateral DB (not shown). DB3—6 cells form DB stalk. b, Micrograph
of budding DB (stage 13). Nuclei are black; cytoplasm is grey. Cells here are arranged side by side, but subsequently the stalk cells intercalate. Reprinted with permission
(ref. 8). Scale bar, 2.5 microm.


http://www.nature.com/nature/journal/v441/n7094/full/nature04829.html

B h' Social interactions among epithelial cells
ra nC |ng during tracheal branching morphogenesis
Amin S. Ghabrial & Mark A. Krasnow

Role of Notch signalling in lateral inhibition Nature 441, 746-749(8 June 2006)
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a—c, Fluorescent micrographs of two DBs (lateral view) in stage 15 wild-type embryo (a), Nts embryo shifted to non-permissive temperature for 6 h during branch budding (b) and
btlGal4 > UAS-NACT embryo that expressed activated N throughout the tracheal system (c). All embryos carried btlGal4 and UAS-GFP transgenes and were double-stained for GFP
(red; tracheal cell marker) and Vermiform (cyan; luminal marker). a, Cells in wild-type DBs are evenly distributed (nuclei are numbered and indicated by asterisks). b, N inactivation
caused the migration of extra cells to the DB tip. c, Constitutive N activity inhibited outgrowth, particularly in posterior metameres in which some DBs completely failed to bud
(arrowhead). Scale bar, 5 microm. d, Social interactions between tracheal cells during budding. The three panels show budding tracheal cells expressing the Btl FGFR moving towards a
Bnl FGF signalling centre, as in Fig. 1a. The first panel illustrates cell competition: cells move towards the lead position and inhibit their neighbours from doing the same. The second
panel illustrates cell cooperation: a cell with less Btl activity allows one with more to move ahead of it. The third panel illustrates cell communication: the lead cell sends a secondary
(2 °) signal to the trailing cells, inducing them to follow the lead cell and activating a tubulogenesis programme. Cells also communicate via Notch-mediated signalling as they compete
for the lead position (inhibition arrow in first panel).


http://www.nature.com/nature/journal/v441/n7094/full/nature04829.html
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Models and mechanisms of proximal distal limb axis morphogenesis.

A Progess zone

) D

B Early specification/expansion

) b

C Two signal gradient

I AER-FGF

Progenitor domains:

. Stylopod

. Zeugopod
- Autopod

D Differentiation front

RA

PE! RE;’[S }-;'V[g
/ S

Meis1/2 | Hoxa11 IHoxa 13

Jean-Denis Bénazet, and Rolf Zeller Cold Spring Harb Perspect Biol 2009;1:a001339



Two morpho-regulatory signaling centers control vertebrate limb-bud development.
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The role of BMP signaling from the interdigital mesenchyme in determination of digit identities.
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