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The main steps of cytokinesis in animal cells and fungi
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In plants cytokinesis does not involve a contractile ring, but rather relies on
local deposition of membrane and cell wall
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WHY STUDYING CYTOKINESIS IS IMPORTANT?

Polyploid cells frequently undergo segregation errors (Theodor Boveri, 1926)

Tumor cells are often polyploid and have multipolar spindles

Some pre-malignant cell types are polyploid; the polyploid condition precedes malignancy, which arises
with p53 loss
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Chromosome non-disjunction (i.e. missegregation) of fen generates binucleate
cells that are genetically unstable
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Change in ploidy is also exploited to increase genetic diversification during
evolution

Polyploidy

diploid ) tetraploid ‘f ' Examples of Polyploid Plants ‘ L N
| " Name Number
Common wheat 6N =42
Tobacco 4N =48
Potato 4N =48
Banana 3N =27
Boysenberry 7N =49
Strawberry 8N =56

Many ferns are polyploid with
chromosome number up to 400N



Part I

1. The mechanics of cytokinesis
2. How cells position the cleavage furrow in a precise place

3. How cytokinesis is coordinated with chromosome segregation

Part IT

Septin ring dynamics for cytokinesis in budding yeast






Cytokinesis depends on a cleavage furrow where the membrane invaginates

Cleavage furrow
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The extraordinary variability in cytokinesis modes

Various embryos during early cleavage. Top row: normal cytokinesis in the nemertean Cerebratulus (left), the urchin S. droebachiensis (middle), and the ascidian Corella (right). Middle row: variations on cytokinesis
include unequal cleavage in urchin embryos (left; the urchin S. purpuratus), and "unipolar" cytokinesis in the embryonic cells of cnidarians (middle; the jellyfish Aequorea) and ctenophores (right; Pleurobrachia). Bottom

row: cytokinesis-like processes include polar lobe formation in diverse spiralians including scaphopods (left; Pulsellum) and bivalves (middle; the clam Acila), and somatic budding (right; the wasp Nasonia). All panels are
DIC images taken from time-lapse movies.




The contractile actomyosin ring (AMR) drives cleavage furrow ingression in many
eukaryotes
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Actomyosin ring contraction in human cells
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In yeasts AMR contraction is coupled to septum (i.e. cell wall) deposition
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How does the actomyosin ring constricts?
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The actomyosing ring has randomly oriented actin filaments at the beginning of
furrow ingression

Late cleavage furrow ingression: partial actin filament alignment at the equator

Initiation of cleavage furrow ingression: myosin activation at the equator
further increases tension along this direction

induces contraction of an actin network composed of randomly oriented filaments

Equatorial contractility displaces lateral
cortex along pole-to-pole direction without
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Actin depolymerization contributes to AMR constriction
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In fission yeast AMR contraction is accompanied by ejection of actomyosin
bundles containing cytokinesis proteins
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From Huang et al., 2016 eLife 5:e21383




Components of the Contractile Ring
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Proteins that Organize and Regulate the Contractile Ring
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Most of the proteins involved in cytokinesis are involved in
either organizing or regulating the acto-myosin ring
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Assembly and constriction of the actomyosin ring requires the RhoA GTPase

From The Cell Cycle: Principles of Control

by David O Morgan
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The RhoA GTPase is a dosage-sensitive regulator of cytokinesis

A

R AL ARTRNRRAARAY - .

control

=== rho-1(RNAI) - severe
rho-1(RNAI) - moderate

1.0 4 : e tho-1(RNAI) - mild
;\ \\ m— coNtrol
0.8 \ '\\L' [

oo U HEEAER

0.6

AN N
ANEERN

m I
rho-1(RNAIi) - moderate 0 \\ \“H}
0 50 100 150 200 250 300 350 400
C time (sec) post anaphase

rho-1(RNAI) - severe

rho-1(RNAI) - mild

normalized cortical distance
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Local activation of RhoA by optogenetics is sufficient to drive cleavage furrow
Ingression

Activation of RhoA perpendicular to the spindle axis Activation of RhoA along the spindle axis

The plasma membrane is homogeneously responsive to RhoA activation!




Artificial activation RhoA in different regions of the membrane can drive
ingression of multiple furrows

From Wagner and Glotzer, 2016, J. Cell Biol. 213:641




The centralspindlin complex promotes RhoA accumulation and accumulation at the
cleavage furrow in metazoans
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Abscission is the final step of cytokinesis and involves the cut of the
intercellular bridge

Drawing from Beata Mierzwa




Hela Kyoto cells

Histone2B-mCherry a-tubulin-EGFP

3 different modes of abscission




The ESCRT-III complex forms spirals that mediate membrane fission during
abscission







Asymmetric distribution of cell fate determinants in €. elegans
embryos

P. Gonczy, ISREC, Lausanne




Cytokinesis following spindle misorientation leads to aberrant distribution of
polarity factors, thereby affecting cell fate

A Division of Drosophila larval brain stem cells
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Perturbing asymmetric cell division causes tumor growth in Drosophila

Caussinus and Gonzalez, 2005, Nature Genetics 37:1125



What signals determine the position of the cleavage furrow?

Nature 382, 466 - 468 (01 August 1996); doi:10.1038/382466a0

‘Anaphase’ and cytokinesis in
the absence of chromosomes

Dahong Zhang & R. Bruce Nicklas

FIG. 3 Cytokinesis in the presence (a) and the absence (b) of
chromosomes. A cleavage furrow (arrows) appeared midway
between spindle poles regardless of the presence (a) or the
absence (b) of chromosomes. Interzone microtubules (arrow
heads) and mitochondria (m) were bundled together while the
furrow gradually moved inward (10 min onwards). In the
absence of chromosomes, the nuclear envelope did not
reform. The final separation of daughter cells is not shown.
Scale bars, 10 um.

Grasshopper spermatocytes
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The mitotic spindle is required to define the correct cleavage plane

S. pombe cell after microtubule depolymerisation (RIc1-GFP)

From Pardo and Nurse, 2003




Cleavage furrow positioning depends on spindle position

chromosomes
aster glass bead

spindle moved to one  the cleavage furrow is not
side of the cell complete and a binucleate
cell is generated

both nuclei undergo
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Ray Rappaport
(marine invertebrate embryos)



Centrosomes Enhance the Fidelity of Cytokinesis in Vertebrates
and Are Required for Cell Cycle Progression®

Alexey Khodjakov and Conly L. Rieder

Laboratory of Cell Regulation, Division of Molecular Medicine, Wadsworth Center, New York State Department of Health,
Albany, New York 12201: and Department of Biomedical Sciences, State University of New York, Albany, New York 12222
J. Cell Biol. 2001, 153:237
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In Drosophila cytokinesis is strictly dependent on the
central spindle and the midbody




Both the spindle poles and the spindle midzone contribute to cleavage furrow
positioning

Not irradiated Anterior ASS Posterior ASS

A cytokinesis furrow is positioned by two
consecutive signals

Henrik Bringmann' & Anthony A Hyman'
Nature (2005) 436:731
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No spindle severing Asymmetric spindle severing
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ASS: asymmetric spindle severing



The spindle has a crucial function in furrow positioning: the central spindle
stimulates RhoA accumulation at the medial cortex, while astral microtubules
inhibit RhoA accumulation at the cell poles
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From Basant and Glotzer, 2005, Curr. Biol. 28:R570






How do eukaryotic cells avoid that cytokinesis occurs before
chromosome segregation?

cyc8/CDKs

itotic entry citokinesis



Mitotic events controlled by CyclinB/Cdk activity

Chromosome condensation
CyclinB/Cdk
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The presence of chromatin in the intercellular bridge prevents abscission

through a checkpoint that depends on the Aurora B kinase

A Telophase

Aurora B

Chromosome
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Figure 6. Aurora B-Mediated Abscission Delay

The presence of a chromosome bridge in the intercellular bridge sustains
Aurora B activity to stabilize the ingressed cleavage furrow and to delay
abscission.

(A) During telophase, active Aurora B localizes adjacent to the midbody, as
in normally segregating cells.

(B) Midbody-associated microtubules disassemble at a time similar to
normally segregating cells, resulting in Aurora B relocalization to the central
midbody (Steigemann et al., 2009).

(C) Accumulation of large F-actin patches on both sides of the intercellular
bridge and phosphorylation of MKLP1 may contribute to the maintenance of
an ingressed cleavage furrow in cells with persistent chromosome bridges
(Steigemann et al., 2009).

(D) Aurora B regulates the abscission machinery by phosphorylating ESCRT-III
subunit CHMP4C (Capalbo et al., 2012; Carlton et al., 2012). A protein complex
formed between ANCHR, CHMP4C, and VPS4 at the central midbody inhibits
ESCRT-IIl and VPS4 (Thoresen et al., 2014).

From Mierzwa and Gerlich, 2014, Dev. Cell 31:525






Septin dynamics during budding yeast cell division




Septin domain organisation
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Structure of septin complexes
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Septin filaments assemble by self-annealing of septin rods
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Distribution of septin rings

Epithelial cell

Septin ring

Budding yeast

From Barral, 2010



Septins often localize at the cell division site

C. elegans




Drosophila

Mammals

The need for septins during cytokinesis is variable
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A septin ring at the bud neck recruits AMR components and is essential for

cytokinesis in budding yeast
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Septin ring splitting in live cells
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The hourglass to double ring transition involves a drastic remodelling
of septins at the division site
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From Weirich et al., 2008

Mother-bud axis




The collar to split-rings transition likely implicates partial disassembly and

re-assembly of septin filaments

— Septin octamer ~ e=== AMR

From Bhavsar-Jog and Bi, 2017
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What is the functional relevance of septin
ring splitting?




Septin ring splitting and AMR contraction are spatially and temporally distinct

processes
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The Mitotic Exit Network promotes mitotic exit and cytokinesis

MEN ﬁeptin ring splitting\
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Is septin ring splitting important for cytokinesis?

Davide
Tamborrini




Is MEN involved in septin ring splitting independently of mitotic exit?
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The hyperactive €DC1474861dllele allows mitotic exit upon MEN inactivation
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MEN promotes septin ring splitting and AMR contraction independently of
mitotic exit
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Overexpression of the E3 ligase DMAZ delays septin ring splitting and
inhibits cytokinesis

GAL1-DMA2

DIC

Merlini et al., 2012 PloS Gen.
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DMAZ overexpression inhibits septin ring splitting and AMR contraction

AL1-DMA2m (Gal)

DIC

Septin
mCherry

AMR-
GFP



Septin destabilization with the cdci2-1allele is sufficient to allow AMR

contraction in DMAZ-overexpressing cells
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Septin displacement/clearance from the division site is a prerequisite for AMR contraction!
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‘ How does Dma2 prevent septin ring

splitting?



Dma2 promotes the ubiquitination of the MEN scaffold at SPBs Nud]1
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Recruitment of Cdcl4 to SPB is impaired upon Dma2 overexpression
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Artificial recruitment of Cdc14 to SPB restores septin displacement and
cytokinesis in DMAZ-overexpressing cells

Nudy & | Cdcl4
GBD GFP

Septin-mCherry Cdc14-GFP




2.

Conclusions

Septin reorganisation in yeast is
necessary for AMR contraction

A subset of MEN factors promote
both events independently of mitotic
exit

Dma2 dampens MEN signalling at
SPBs through Nud1 ubiquitination

Tamborrini et al., 2018, Nature Comm. 9:4308
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Regulation of cytokinesis by a scaffold protein at centrosomes/SPBs is conserved

A S. pombe S. cerevisiae H. sapiens
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