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What are stem cells?

What is a stem cell?
replicate itself, or...

A single cell that can

differentiate in’ro many
Ce_II types.

Image prepared by Catherine Twomey for the Notional Academies, '
Understanding Stem Cells: An Overview of the Science and Issues s -
from the National Academies, http: / /www.nationalocademies.org/stemcells.
Academic noncommercial use is permitted.
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IPS reprogramming has...

. KLF4, 50X2, c-Myc, Nanog, Oct-3/4, LIN-28 |
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Adult Fibroblast Cell Reprogram Cells

S cells

... NO ethical issue compared to hES cells!



Human IPS cell derivation, differentiation

and applications
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Differentiation of hiPSC in cardiomyocytes

conditions and assumptions:

v Differentiation of specific populations of CMs
(ventricular vs atrial vs nodal)

v" Purified cardiac population

v Obtain mature (adult) hiPSC-CMs



Current methods for cardiac differentiation of

hPSC
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Monolayer-based cardiac differentiation protocol
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nature
biotechnology

SIRPA Is a specific cell-surface marker for isolating
cardiomyocytes derived from human pluripotent stem cells

Nicole C Dubois!, April M Craft!, Parveen Sharma?, David A Elliott?, Edouard G Stanleﬁ, Andrew G Elefanty3,
Anthony Gramolini? & Gordon Keller!

To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from
human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory
protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent
stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an
antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation
cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells

were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating
populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology
for generating large numbers of enriched cardiomyocytes for therapeutic applications.



Purified beating syncytium from hPSC-CMs
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Metabolic sorting of hPSC-CMs

Cell Stem Cell

Distinct Metabolic Flow Enables
Large-Scale Purification of Mouse and Human
Pluripotent Stem Cell-Derived Cardiomyocytes

Shugo Tohyama,!-2 Fumiyuki Hattori,'-4* Motoaki Sano,! Takako Hishiki,2 Yoshiko Nagahata,2->* Tomomi Matsuura,25
Hisayuki Hashimoto,? Tomoyuki Suzuki,® Hiromi Yamashita,!# Yusuke Satoh,! Toru Egashira,’ Tomohisa Seki,!
Naoto Muraoka,! Hiroyuki Yamakawa,! Yasuyuki Ohgino,' Tomofumi Tanaka,* Masatoshi Yoichi,* Shinsuke Yuasa,'
Mitsushige Murata,’ Makoto Suematsu,?° and Keiichi Fukuda'-*

1Department of Cardiology

2Department of Biochemistry

Keio University School of Medicine, Tokyo 160-8582, Japan

3Japan Society for the Promotion of Science, Tokyo 102-8472, Japan

4Asubio Pharma, Kobe 650-0047, Japan

5Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project,
Tokyo 160-8582, Japan

SDepartment of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
*Correspondence: hattori.fumiyuki.ef@asubio.co.jp (F.H.), kfukuda@a2.keio.jp (K.F.)

http://dx.doi.org/10.1016/j.stem.2012.09.013



Cardiomyocytes >

ESCs

Metabolic sorting of hPSC-CMs
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How mature are hPSC-derived CMs in the dish?




Comparison of action potentials
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hiPSC-CMs exhibit spontaneous automaticity!



@ European Heart Journal BASIC SCIENCE

EUROPEAN doi:10.1093/eurheartj/ehs096
SOCIETY OF
CARDIOLOGY*

Derivation and cardiomyocyte differentiation
of induced pluripotent stem cells
from heart failure patients

Limor Zwi-Dantsis!'2, Irit Huber!, Manhal Habib!, Aaron Winterstern!,
Amira Gepstein!, Gil Arbel', and Lior Gepstein?:3*

'Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology,
POB 9649, Haifa 31096, Israel; “Biotechnology Interdisciplinary Unit, Technion—Israel Institute of Technology, Haifa, Israel; and *Cardiology Department, Rambam Medical Center,
Haifa, Israel



Integration of HF hiPSC-CM in host cardiac tissue

Integrated hiPSC-CMs with rat CMs



Integration of HF hiPSC-CM in host cardiac tissue
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How to improve the maturity of

hiPSC-derived cardiomyocytes?
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Developmental progression of cardiac myocytes

cTnl isoform
Rod-shaped

defined sarcomere formation
Developmental and chamber-
specific sarcomere isoforms
Refined Ca2+ cycling and beating

Nascent sarcomere formation
Embryonic/fetal isoforms
Amorphic cell structure
Rudimentary Ca2+ cycling and beating
ssTnl




Stem cell maturation
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Maturation Approaches
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Blochemical Approach

= Growth hormaone (B.g., tri-iodo-khyronine)

= Adrenergic stimulation {e.g.,
norepinephnine}

Molecular Biology Approach

= Crarexpression of cardiac spacific
- ion channal {ie., i}
- microANA {i.e., miR-1}

II-..F'

Bioengineering Approach
= Substrate stiffness
* Topographymicropatiaming
= Mechanical conditioning
- Static
- Cyclic
= Electrical pacing
- Caonstant
- Progressive
= Augmenting nutrient daliverysurvival
- Microsystems
- Bioreactors
Vascularization

Cardiomyacyte

Assessment of Maturation
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Morphology
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Molecular Assays
= Gang expression analysis

- Whols genome seguencing

= AMNA seguencing
= Epiganomic signature
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Functional Assays
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= Conftracton

- Force generation

- Motion prafile
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Cell Reports

Metabolic Maturation Media Improve Physiological
Function of Human iPSC-Derived Cardiomyocytes

Graphical Abstract

iPSC-cardiomyocytes
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Highlights

e We developed a defined maturation medium for hiPSC-CMs

e The media improve electrophysiological and mechanical
characteristics of hiPSC-CMs

e The media improve the fidelity of disease modeling

Authors

Dries A.M. Feyen, Wesley L. McKeithan,
Arne A.N. Bruyneel, ...,

Thomas Eschenhagen,

Christian M. Metallo, Mark Mercola

Correspondence
mmercola@stanford.edu

In Brief

Physiological immaturity of iPSC-derived
cardiomyocytes limits their fidelity as
disease models. Feyen et al. developed a
low glucose, high oxidative substrate
media that increase maturation of
ventricular-like hiPSC-CMs in 2D and 3D
cultures relative to standard protocols.
Improved characteristics include a low
resting V,,,, rapid depolarization, and
increased Ca?* dependence and force
generation.



Fatty acids improve the hPSC-CMs
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E i) Mold fabrication
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Biocompatible polyethylene glycol (PEG) hydrogel arrays
imitating the myocardial ECM and allowing formation of
engineered cardiac tissue constructs.

Kim et al., PNAS 2010



Monolayer
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Brief UltraRapid Communication

Matrigel Mattress

A Method for the Generation of Single Contracting Human-Induced
Pluripotent Stem Cell-Derived Cardiomyocytes

Tromondae K. Feaster, Adrian G. Cadar, Lili Wang, Charles H. Williams, Young Wook Chun,
Jonathan E. Hempel, Nathaniel Bloodworth, W. David Merryman, Chee Chew Lim,
Joseph C. Wu, Bjorn C. Knollmann, Charles C. Hong



PHYSIOLOGIE

Matrigel mattress L S—
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Feaster et al., Circ Res 2016
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Control Matrigel Mattress

Control hiPSC-CM Mattress hiPSC-CM Rabbit-CM

40 mV
100 ms Feaster et al., Circ Res 2016



PHYSIOLOGIE

Matrigel mattress O e
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Engineered heart tissues St L
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Engineered heart tissues Qe

Figure 2. Histological Evaluation of
hiPSC-EHTs

(A) Representative still view of a living EHT.
(B) Longitudinal section stained with H&E.
(C) Cross section stained for dystrophin.
(D) Longitudinal section stained for MLC2v.
(E)  Whole-mount immunofluorescence
confocal microscopic section of EHT stained
with DRAQ5 (nuclei, blue) and a-actinin
(green).

(F) Confocal analysis of hiPSC-CM cultured
in 2D for 30 days stained with DRAQ5 (blue)
and antibodies against cardiac MLC2v (red)
and a-actinin (green).

(G and H) Whole-mount immunofluo-
rescence confocal microscopic section of
30- to 35-day-old EHTs stained with DRAQ5
(blue) and antibodies against a-actinin
(red; G) and caveolin-3 (green; G) or phal-
loidin (red; H) and an antibody against
junctophilin-2 (green; H).

(I) Transmission electron microscopy of
35-day-old EHT. Arrows indicate structures
resembling t tubules.

See also Figure S2.

Dystrophin

Mannhardt et a/.,, Stem Cell Report 2016



Engineered heart tissues Qe

Figure 2. Histological Evaluation of
hiPSC-EHTs

(A) Representative still view of a living EHT.
(B) Longitudinal section stained with H&E.
(C) Cross section stained for dystrophin.
(D) Longitudinal section stained for MLC2v.
(E)  Whole-mount immunofluorescence
confocal microscopic section of EHT stained
with DRAQ5 (nuclei, blue) and a-actinin
(green).

(F) Confocal analysis of hiPSC-CM cultured
in 2D for 30 days stained with DRAQ5 (blue)
and antibodies against cardiac MLC2v (red)
and a-actinin (green).

(G and H) Whole-mount immunofluo-
rescence confocal microscopic section of
30- to 35-day-old EHTs stained with DRAQ5
(blue) and antibodies against a-actinin
(red; G) and caveolin-3 (green; G) or phal-
loidin (red; H) and an antibody against
junctophilin-2 (green; H).

(I) Transmission electron microscopy of
35-day-old EHT. Arrows indicate structures
resembling t tubules.

See also Figure S2.

Dystrophin

Mannhardt et a/.,, Stem Cell Report 2016
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Figure 5. Regulation of Contractile Function of hiPSC-EHTs by Inotropic Drugs

Average contraction peaks before (black) and after (red) the respective inotropic drug intervention.

(A-H) Positive inotropic drugs (A-F) were tested at submaximal (0.5-0.6 mM), and negative inotropic drugs (G and H) at high (1.8 mM; H)
and submaximal (0.5 mM; G) calcium concentrations. Depicted is the electrically stimulated (1.5-2 Hz) mean relative force in percentage
of baseline maximum + SEM in modified Tyrode’s solution; replicates are indicated as EHTs/number of independent experiments.
(A) calcium (5 mM; n = 8/2). (B) ouabain (100 nM; n = 6/2). (C) Bay K-8644 (300 nM; n = 4/1). (D) EMD-57033 (10 uM; n = 4/1).
(E) isoprenaline (100 nM; n = 4/1). (F) rolipram (10 uM) + isoprenaline (100 nM, red) versus isoprenaline (100 nM, black; n = 11/2).
(G) ryanodine (0.3 uM, red; 10 uM, blue; n = 6/2). (H) verapamil (1 uM; n = 18/2).

See also Figure S5.

Mannhardt et a/.,, Stem Cell Report 2016



Early-stage intensity-trained tissues b gt i

LETTER

Advanced maturation of human cardiac tissue
grown from pluripotent stem cells

Kacey Ronaldson-Bouchard!, Stephen P. Ma!, Keith Yeager!, Timothy Chen!, LouJin Song?, Dario Sirabella!, Kumi Morikawa?,
Diogo Teles!*4, Masayuki Yazawa? & Gordana Vunjak-Novakovicl>*

https://doi.org/10.1038/s41586-018-0016-3




Early-stage intensity-trained tissues @

E Stimulation (3.5-4 V/cm)

2Hz —— Day 23
2Hz —— Day 25
2Hz —— Day 27
2Hz —- Day28

2Hz ——

Y

Ramp to 6 Hz

Ronaldson-Bouchard et a/., Nature 2018



Early-stage intensity-trained tissues
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LETTER
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Early-stage intensity-trained tissues A
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Early- vs late-stage intensity-trained tissues @ s

Early-stage intensity-trained tissues

Late-stage intensity-trained tissues




An organ-on-a-chip model for pre-clinical drug evaluation in progressive

non-genetic cardiomyopathy

Check for
updates

Erika Yan Wang®, Uros Kuzmanov ¢, Jacob B. Smith ¢, Wenkun Dou ¢, Naimeh Rafatian’,
Benjamin Fook Lun Lai“, Rick Xing Ze Lu®, Qinghua Wu*“, Joshua Yazbeck “, Xiao-Ou Zhang ®,

Yu Sun ¢, Anthony Gramolini ¢, Milica Radisic *“""

Efficacy evaluation

-----------------------
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