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Example of a General Research Strategy which will need
Skeletal Muscle Tissue Engineering
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Example of a General Research Strategy which will need
Skeletal Muscle Tissue Engineering
Mobility impairments

Death Mobility i
Mobilit
/ recovery Death ‘ / y
recovery
Disggse Technical progress Disease
Injury |
Functional status
ICU stay
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Adapted from Latronico et al, 2017



Example of a General Research Strategy which will need
Skeletal Muscle Tissue Engineering

7 Days 6 Month

Atrophy *2 ~ Atrophy " Loss of muscle
stem cell pool

Patient 1 \ | " Disability
Handicap
~ gy i 2 o
Patient 2 \ .\ récupération
Atfophy ; /  Normal
Dos Santos AUJRCCM 2017

Two chief questions

1. What are the mechanisms underlying this heterogeneity?
2. How to restore mobility?



Satellite cell and muscle regeneration in vivo

Satellite cells




Cell fate: A cascade of transcription factors controls regeneration

Satellite cells
(progenitor)

* After Injury, growth stimulus

Quiescence Activation

Self-renewal

Myoblastes Myogenic progenitor

Muscular fibres
regeneration

= /4

myogenic transcription factors

Pax-7
------ Myf-5

Different stages of SCs differentiation

Pax7+ Myf 5 - MyoD- (quiescence/sef-renewal
Pax7+ Myf 5 + MyoD- (activation)

Pax7+ Myf 5 + MyoD+ (proliferation)
Pax7-MyoD+MyoG+ (differentiation)

Pax: Protein paired Box
MyoD: myogenic differentiation 1
Myf: Myogenic factor
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Cell Stem Cell 11, 333—-345, September 7, 2012



Cell fate: A cascade of transcription factors controls regeneration

Génération de progéniteurs
myogéniques et le maintien du
pool de cellules souches

Qiuescent Primitive satellite cell
ax7h
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Cell fate: A cascade of transcription factors controls regeneration

Qiuescent Primitive satellite cell

ax7h
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Lineage-primed satellite cell
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The Notch signaling pathway during myogenic progression and self-renewal

Self-renewal

G RBP-J : Recombination Signal Binding Protein

Quiescent Transient Fusion Early Late For Immunoglobulin Kappa J Region

amplifying competent differentiated differentiated
DLL1: Familles de ligands Notch

NIC: domaine intracellulaire de Notch.

Spyrl: an inhibitor of growth factor signaling

Signal sending cell

Quiescence -
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i s - m ‘_ 0 " Proliferation K

Signal receiving cell Fusion Commitment
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A cascade of transcription factors controls regeneration

FAP (T VY

Stimulatory Factors

N TCF4+

Fibroblast
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Cell microenvironment and muscle regeneration process
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Cell microenvironment and muscle regeneration process
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Cell microenvironment and muscle regeneration process
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Cell microenvironment and muscle regeneration process
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Cell microenvironment and muscle regeneration process
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Cell microenvironment and muscle regeneration process
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Cell microenvironment and muscle regeneration process
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Fig. 1 Multiple cell types contribute to skeletal muscle regeneration. SCs satellite cells, FAPs fibro-adipogenic precursor cells, ECs endothelial
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Journal of Muscle Research and Cell Motility (2019) 40:1-8
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Cell microenvironment and muscle regeneration

Efficient regeneration

Inflammatory

FAPs
Fibrobéasts
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— Th2 inflammatory response
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[ Period of injury amplification by myeloid cells
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[]Early differentiation phase of regeneration
[ Terminal differentiation phase of regeneration



Cell microenvironment and muscle regeneration

pluripotent
Développement stemcells  Mesoderm Paraxial Dermomyotome Muscle Activated
stage PSC Progenitor Mesoderm Progenitor Progenitor Myoblast
Wnt Wnt
La:\::;:;gaetnrf:?l':ll'::\esitions BMmP Wnt FGF HGF "
usion
rar @ fa Notch . fs @
muscle-specific T Msgnl Pax3 Pax3 Myfs
proteins Toxb Meox1/2 Pax7 MyoD
Foxcl/2 MyfS MyoG

FGF: Fibroblast growth factor

BMP: Bone morphogenetic protein

TBx6 : T-Box Transcription Factor 6
Msgn1 : transcription factor mesogenin 1
Pax : Paired box protein

MEQOX1: Mesenchyme Homeobox 1

FOX : FOX (forkhead box)



Why satellite cells become rapidly activated and lose engraft-ment ability
following in vitro culture ?

Muscle on a ship_

- A

Difficulties studies of skeletal muscle in vitro -p38 MAPK activation (mitose)

-Metabolism
Glycolysis: ASC activation and MyoD &

-Substrate stiffness

Epiblastor Mesoderm  Pparaxial Dermomyotome Muscle Activated Myotube Myofiber

PSC Progenitor Mesoderm Progenitor Progenitor Myoblast

Wnt Whnt

BMP wm FGF HGF O ©

Notch v Fusxon Maturahon
—
©®
T Msgnl Pax3 Pax3 MyfS
Tox6 Meox1/2 Pax7 MyoD MyHC
Foxcl/2 MyfS MyoG Dystrophin

Pax 7 + Myf 5 + MyoD-

A subset of muscle progenitors does not differentiate but resides on the
outside of the myofiber to contribute to future muscle regeneration events



Cell microenvironment and muscle regeneration

Substrate stiffness
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Mechanotransduction and cell fate
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Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction
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Dynamic changes in S1P metabolism: endogenous mechanisms of tissue repair/
regeneration



Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction

exos 1P o
Release of 51P ,
ECM-thetered

3r

DIFFERENTIATION  sunponer

- “”iffi-ﬁ’”/j\\

-
actors (i.e. HGF)

FA complex: mechanotransducer
- Integrin family protein
e M 2
- Actin-coupled complex FA kinase

/ -p38 MAPK

(N4} cytoshsseton
W / rterachon
Musiie nmr?n gene expreison

SC

o —

Proliferation Differentiation




Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction
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Muscle on a ship

Q Material-controlled release of S1P ?

Eplblastor Mesoderm  Paraxial Dermomyotome Muscle Actlvatd

Myotube Myofiber
Ptogonltm Mesoderm Progenitor  Progenitor
Wm

Meoul/Z
Foxcl/2 Mny

i3




Skeletal muscle tissue engineering:

To reproduce in vitro the environment of Muscle Progenltor
Basal lamina Prlmary myotube

Dermomyotome

Primary fibre

Neural tube Satellite cel

% 2 Primary Secondary
Specification Migration M is I Myogenesis | Maturation
viamerter scaies
dm/em | 1.5mm 10-100 pm 12pm | S18am |

Skeletal muscle .~ Muscle Fascicle Muscle fiber Myofibril - Actin/Myosin

Supportive scaffold to
== spatiotemporally regulate muscle
progenitor migration and fate

Laminin-rich matrix, collagen 1V,
fibronectin,
nidogen/entactin, perlecan (protéoglycan)

Basal lamina ==——2»

perimysium épimysium



Skeletal muscle tissue engineering (SMTE)

Approaches in generating tissue and organ models

Top-down approaches

Cell isolation

CULTURING ISOLATED CELL ‘ /

Two main characteristics :
Aligned fibers

. Flexible substrate Mochanical
(tension) cues
. =4
Musclj on a ship -

- /

Diagnosis / \

Screening Treatment




Skeletal muscle tissue engineering:
How To reproduce in vitro the environment of Muscle Progenitor ?

Hydrogel-based scaffolds: Hydrophilic polymer

constant bulk tension in a nylon - Wlde va riety Of
support structure

hydrogels : collagen,
fibrin, gelatin, alginate
and polymers.

- Ease to functionalize
them with adhesion
peptides and conductive
polymers.

- Muscle tissue-like
stiffness which improves

e.g. PLLA/PGLA, [[FASS Embed cells at Myotubes kept under tension
polyurethane ' high density between anchor posts myotube differentiation?
Hydrogel-based scaffold for in vitro engineering - Possibility to create a

volume up to 1mm of
1: Khodabukus and al. « In Vitro Tissue-Engineered Skeletal . 3
Muscle Models for Studying Muscle Physiology and diameter
Disease. » Advanced healthcare materials 2018
2: Engler and al. « Myotubes differentiate optimally on substrates
with tissue-like stiffness: pathological implications for soft or stiff
microenvironments. » J Cell Biol. 2004.
3: Chen and al. « Engineering multi-layered skeletal muscle tissue
by using 3D microgrooved collagen scaffolds. » Biomaterials 2015; 30



Skeletal muscle tissue engineering:
How To reproduce in vitro the environment of Muscle Progenitor

B
Hydrogel-based scaffolds

900 pm

Cell/hydrogel mixture/growth medium/ fibrinogen/
Matrigel

Polymerized at 37 °C

Dynamic
cultured Q’Q

Matrigel resembles the laminin/collagen IV-rich basement membrane extracellular environment found in many tissues and is used by
cell biologists as a substrate




Skeletal muscle tissue engineering:

Testing the Ability of satellite cells to maintain functionality in vitro

SCs from neonatal rat muscles and expanded for 2 d before tissue fabrication

C Engineered Muscle Neonatal Muscle

\\\\\ :'.A :.\\ ‘K \“\\K B

~

52

a e

50 @R Ki67+Pax-
~ U

2 2 K67+ PaxT

| =X 0.44

-

£ 5 4,. 2 Ki6T-PaxTs

“w

Juhas et al. PNAS 2014

7 Days 6 Month

A

Atrophy % Afrophy % Loss of muscle
Y stem cell pool
Patient 1 \

Disability
Handicap
___—_%_____r%
S ‘ 2
Patient 2 . \ ) récupération
Atrophy W iNonisl

Dos Santos AJRCCM
2017



Skeletal muscle tissue engineering:
A potential vector for SCs implantation...

Low Migration Early differenciation High mortality
100 4
P
g
H
24hours ) o e e r_l ’_fl I_Z] ’-ﬁ EI Ié_l I:;l

Time after transplantation (h)
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-
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Myogenin+ human

B s I s O

1 hour 6 hours 24 hours 3days 5 days




Skeletal muscle tissue engineering:
A potential vector for SCs implantation...

a Freshly solated
-» Native Fber
1074 - AMF
. No Fber
Pax7CreER and the ROSA26LUSEAP mouse strains to 8 108 -
genetically label MuSCs with the Luciferase reporter ST
Q
g £ 10°4
Rosa 6 Luciferase
RIS 35
m 1 -
Tissue-specific Cre-driver Floxed alleles of Nudeus 0*
gene Y ‘/
10° ey T T T T T r—
— 8 2 4 6 8 11 13 15 18 21
~{_ Promoter X ) Cre x e
% ; Days post transplantaton
El c into pre- iniured TA muscles
' Q ~
m
@\'
e e inactivated Gene Y
_D_ In tissue X
o
- AMF
- NoFber
2 7 14
Cays post transplantation

Nat Biotechnol. 2016 July ; 34(7): 752-759.



Skeletal muscle tissue engineering:
How To reproduce in vitro the environment of Muscle Progenitor

Direction of flow

=) Q
high voltage applied to a e _ - . S 44:4 .
liquide droplet : = @ = S
El ffold b e
ectrospun SCAITtolias - ® ® @
Surface tension i peeriing
electrostatic repulsion
q Zobis et soNdmiention Droplet stretching
A - ,
High voitage
- 7’“ - Wide variety of
« biodegradable polymers

(PCL, PLGA) with High
molecular cohesion

Distance
hetmsanthy Already used for fabrication of controlled
drug delivery systems (in-situ gels,

microspheres, implants, nanoparticles....)

- Easyto produce aligned
fibers and to regulate
the diameter

- Long and difficult

Scheme of A) electrospinning technique B) random and aligned fibers process to produce
C) SEM micrographs of PCL scaffolds (Poly lactic-co glycolic acid) large scaffolds

35



Skeletal muscle tissue engineering:

How To reproduce in vitro the environment of Muscle Progenitor

Distance
Polycaprolactone (PCL) (10em-15cm) n Collecting wheel
Solvant (TFE) ~ Rotation speed
Concentration (10% - 18%) ’,.Xv/_‘ / 0\ : 3 (320 RPM - 2400 RPM)

A
|

)

Dispenser
Flow rate (0.5 - 2mL/hr)

RANDOM
Wheel speed : 320 RPM

Distribution of fiber dlameter

B Aligned
0 Random

b | »
.0 0204 0608 10 1.2 14 16 1.8 2022 24 26 28 30
Dummeter (jim)

=> Similar fiber diameter distribution

ALIGNED
Wheel speed : 2400 RPM

-y
.

Iy

Directionality of electrospun fibers
+/- 207

- - B Aligned
0 Random

. ";tlf‘. “A‘ﬂllllt{f:a‘;ﬁ:f.

) £ Ay
o w0 ;0‘ 40 50 €0 70 80 90 1001101201 301401501601 70100
Angle (1)

= Aligned scaffold
88 % of fibers oriented at same angle (+ 20°)



Skeletal muscle tissue engineering:
How To reproduce in vitro the environment of Muscle Progenitor

A Silicon wafer coated with SU-8

a negative photosensitive resin commonly used in the manufacture of micro-systems

(?CHg

51:::‘\‘#'{ m%l(—)gfm - Hybrid component

TTIYTITR
PDMS ¥ 1
RrITTITIT )
A _— — - High reactivity and high conversion
! Organic Inorganic rate
part part - Organic part can be easily
é photopolymerized
— - Inorganic part has a special affinity
é with substrates like glass or silicone




Skeletal muscle tissue engineering:
How To reproduce in vitro the environment of Muscle Progenitor
A Silicon wafer coated with SU-8

How to bio functionalize the silicon ? .... MEC mimic: peptid RGD
(tripeptide arginine, glycine, acide aspartique)
Alkoxysilans: APTES
_f)
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o)

9
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-’2)
o)

matrigel

i-OH
; NH, Nn s
S
3 ovo? o /)
\ /Sis s;
o ¢ | 03' 0y
OH OH OH\ P S 0
1 1 TN i et
Oxidized PDMS surface SllanlzedPDMSsurface

Collagen

\J ~ ~

Actomyosln network

N
¢ ¢ * - *
/ 7 Lo
SISy Sk 20 ‘
o+-0 30 "p
9 0 o\
R RN

l pmtelm
Celladhesion & %
e —— 7 5JL &;&\‘Y"
R inegrin Unbound

A GD integrin
mom




Skeletal muscle tissue engineering:

How To reproduce in vitro the environment of Muscle Progenitor
A Silicon wafer coated with SU-8

Satellite cells Differentiation/1 ax

Matrigel
RGD adhesion peptides

Patient Eccentric contraction

Mitochondria

Electrical pulse stimulation (EPS)

myotube

Control : _ _ _ . _
Without microsillon With microsillon



Interrest of Skeletal muscle tissue engineering (SMTE)

Satellite cells isolation

* from biopsies Muscle mass and function

Metabolic, mechanical,

oxidative, inflammatory b bl
stresses, uremic toxins
‘- '
—_ W =
Controls . A +/- Recreate pathological é
* ks | environments me
-' ‘l" )

Multiscale mobility
identity card

Patients
Bank FDA-approved

Screening of bioactive molecules

- i T e

/1 — Define a Pathological signature
= <_ Drugldentification
Therapeutic targets _ . _
Epigenomic biomarker

m Metabolic and myokine profiles
Molecular pathways
Bi ive molecul )
oactive molecule Muscle Activated DNA Methylation...
for CT progenitor myoblast

o-@

ime

Molecular signature of quiescence

Potential QM




Skeletal mUSCIe tissue engineering: human umbilical artery smooth-muscle cells
From 2D to 3D

“2:FN < :Gelatin
1) Layer-by-layer assembly ) i
of FN and gelatin on cell gF=gigsvin =5
surface i :
i

first cell monolayer first cell monolayer coated
with nano-ECM films

* * *

+ second cell

2) Seeding and adhesion
e of second cell

S 3) Repeating -
e processes (1) and (2)
Ao e FeoePe Yo 3

3D multilayer Bilayer

human umbilical vascular endothelial cells (HUVEC)

human umbilical artery smooth-muscle cells

Accelerated implant perfusion and anastomosis with host vasculature in vivo



Bionic Initiative@Montpellier

3D Muscle Tissue Engineering

Robotics - Electronics - Mechanics Bio-mechanical design
Enhanced muscles motorisation

Intra-muscular sensors g

Biology printed meniscus

a7
\:/f“— e

Knee artificial actuation
and integrated sensing

» passive or active?

» what technology?

--------

3D Muscle Tissue Engineering
-Vascularised
-Inervated

SLIRMM

" Laboratoire d'Informatique, de Robotique et de Microslactronique de Montpeliier



To resume.......
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In vitro tissue engineering
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Enhanced muscles
Intra-muscular sensors
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Biology printed meniscus
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5th SUNRIiSE WEBINAR iy,

= — SUNRISE

/ W
STEM CELLS: Between philosophy and biology 2N

Dr Lucie Laplane, PhD

University Paris 1 Panthéon-Sorbonne
Institut Gustave Roussy
Arizona State University, USA

Research topic
Stem cells play a critical role in the development, daily renewal, and reparation/regeneration of tissues. They
are also involved in various diseases in particular cancers. Yet, there is a lot that remains to be understood
about them and the traditional view is being increasingly debated. This is both a biological and a philosophical
issue. Mixing both approaches, | will discuss the following questions: (1) What kind of property is stemness? |
will show that stemness can be four types of properties depending on tissues and contexts (2) Does it matter? |
will highlight practical consequences of each type of stemness for cancer treatment (3) Is stemness stable? | will
review empirical data questioning stemness stability and suggesting that some cancers could be associated with
a switch in stemness property. (4) Is stem cell a unified biological category? | will end with a perspective on how
to handle the debate on stemness natural kind by mixing philosophy, experimental biology and phylogenetic
analyses.
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Additional informatrion



Role of Myokines in Regulating Skeletal Muscle Mass and Function

Autocrine and paracrine effets

Inflammation l

T Muscle atrophy

T Muscle mass T Fatty acid oxidation Muscle regenerationT
A| Muscle hypertrophy IL-6 Fatty acid oxidation T
T Fatty acid oxidation Irisin . . [BDONF '
\. F Fat metabolism T
T Muscle atrophy IL-15 | Myoblast differentiationT
Myostatin Muscl | hy 4
Miiscle massl uscle mass/muscle atrophy |
SPARC | Muscle repair y‘
Myonectin l
Autophagy i FGF21
t Mitochondrial biogenesis Decorin Muscle mass A|
T Myogenesis Mitochondrial biogenesis T

Muscle atrophy i

Front. Physiol., 30 January 2019
Sec. Striated Muscle Physiology
SPARC: Secreted Protein Acidic and Rich in Cysteine https://doi.org/10.3389/fphys.2019.00042

BDNF: Brain-Derived Neurotrophic Factor



Muscle—Organ Crosstalk: The Emerging Roles of Myokines
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